

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

George Bell \& Sons'

CAMBRIDGE MATHEMATICAL SERIES. Crown 8vo.
ARITHMETIC. With 8000 Examples. By Charles Pendlebury, M.A., F.R.A.S., Senior Mathematical Master of St. Paul's, late Scholar of St. John's College, Cambridge.

Completr. With or without Answers. 8th edition. 4s. 6d.
In two Parts, with or without Answers, 2s. 6d. each. Part 2 contains Commercial Arithmetic. (K'ey to Part 2, 7s. 6d. net.)

In use at Winchester; Wellington ; Marlborough ; Rugby; Charterhouse ; St. Paul's; Merchant Taylors'; Christ's Hospital ; Sherborne ; Shrewsbury: Bradford; Bradfield ; Leamington College; Felsted; Cheltenham Ladies College ; Edinburgh, Daniel Stewart's College ; Belfast Academical In stitution ; King's School, Parramatta ; Royal College, Mauritius ; \&c. \&c.
EXAMPLES IN ARITHMETIC, extracted from the above. 6th edition, with or without Answers, 3 s . ; or in Two Parts, 1 s .6 d . and 2 s .
CHOICE AND CHANCE. A Treatise on Permutations, Combinations, and Probability, with 640 Exercises. By W. A. Whitworth, M.A., late Fellow of St. John's College, Cambridge. $4^{t h}$ edition, $6 s$.
EUCLID. Books I.-VI. and part of Book XI. Newly translated from the original Text, with numerous Riders and Miscellaneous Examples in Modern Geometry. By Horace Deighton, M.A., formerly Scholar of Queen's College, Cambridge; Head Master of Harrison College, Barbados. $4^{t / h}$ edition. 4s. 6d. Or Books I.-IV., 3s. Books V. to end, 2s. 6d.

Or in Parts: Book I., is. Books I. and II., is. 6d. Books I.-III., 2s. 6 d . Books III. and IV., Is. 6 d . A Key, 5s. net.

In use at Wellington; Charterhouse; Bradfield ; Glasgow High School ; Portsmouth Grammar School ; Preston Grammar School ; Eltham R.N. School ; Saltley College; Harris Academy, Dundee, \&c. \&c.
EXERCISES ON EUCLID and in Modern Geometry, containing Applications of the Principles and Processes of Modern Pure Geometry. By J. McDowell, M.A., F.R.A.S., Pembroke College, Cambridge, and Trinity College, Dublin. 3 rd edition, revised. 6s.
ELEMENTARY TRIGONOMETRY. By Charles Pendlebury, M.A., F.R.A.S., Senior Math. Master of St. Paul's, late Scholar of St. John's College, Cambridge. 4s. 6 d .
ELEMENTARY TRIGONOMETRY. By J. M. Dyer, M.A., and the Rev. R. I. Whitcombe, M.A., Assistant Mathematical Masters, Eton College. 2nd edition, revised. 4s. $6 d$.
INTRODUCTION TO PLANE TRIGONOMETRY. By the Rev. T. G. Vyvyan, M.A., formerly Fellow of Gonville and Caius College, Senior Mathematical Master of Charterhouse. 3rd edition, revised. 3s. 6 d.
ELEMENTARY MENSURATION. By B. T. Moore, M.A., formerly Fellow of Pembroke College, Cambridge. 2nd edition, revised. 3s. 6 d .
ANALYTICAL GEOMETRY FOR BEGINNERS. Part I. The Straight Line and Circle. By the Rev. T. G. Vyvyan, M.A. $2 s .6 d$.

Mathematical Works.

CAMBRIDGE MATHEMATICAL SERIES (continued).
CONIC SECTIONS treated Geometrically. By W. H. Besant, Sc.D., F.R.S., late Fellow of St. John's College. 9th edition. 4s. $6 d$. Solutions, 5s. net.
CONIC SECTIONS, An Elementary Treatise on Geometrical. By H. G. Willis, M.A., Assistant Master of Manchester Gramnar School. 5 s.
CONICS, The Elementary Geometry of. By C. Taylor, D.D., Master of St. John's College, Cambridge. 7th edition. 4s. 6 d .
SOLID GEOMETRY, An Elementary Treatise on. By W. Steadman Aldis, M.A., Trinity College, Cambridge. $4^{t h}$ edition, revised. 6s.
ROULETTES and GLISSETTES, Notes on. By W. H. Besant, Sc.D., F.R.S., late Fellow of St. John's College, Cambridge. 2nd edition. 5s.

GEOMETRICAL OPTICS. An Elementary Treatise. By W. Steadman Aldis, M.A., Trinity College, Cambridge. $4^{\text {th }}$ edition, revised. 4s.
RIGID DYNAMICS. By W. Steadman Aldis, M.A. 4 s .
ELEMENTARY DYNAMICS, A Treatise on, for the use of Colleges and Schools. By William Garnett, M.A., D.C.L. (late Whitworth Scholar), Fellow of St. John's College, Cambridge. $5^{\text {th }}$ edition, revised. $6 s$.
DYNAMICS, A Treatise on. By W. H. Besant, Sc.D., F.R.S. 2nd edition. Ios. $6 d$.
HYDROMECHANICS, A Treatise on. By W. H. Besant, Sc.D., F.R.S. $5^{\text {th }}$ edition, revised. Part I. Hydrostatics. 5 s.
ELEMENTARY HYDROSTATICS. By W. H. Besant, Sc.D., F.R.S. 17th edition. 4s. 6d. Key, 5 s.
HEAT, An Elementary Treatise on. By W. Garnett, M.A., D.C. L., Fellow of St. John's College, Cambridge ; Principal of the Science College, New-castle-on-Tyne. 6th edition, revised. 4s. $6 d$.
THE ELEMENTS OF APPLIED MATHEMATICS. Including Kinetics, Statics, and Hydrostatics. By C. M. Jessop, M.A., late Fellow of Clare College, Cambridge ; Lecturer in Mathematics in the Durham College of Science, Newcastle-on-Tyne. $6 s$.
MECHANICS, A Collection of Problems in Elementary. By W. Walton, M.A., Fellow and Assistant Tutor of Trinity Hall, Lecturer at Magdalene College. 2nd edition. $6 s$.
PHYSICS, Examples in Elementary. Comprising Statics, Dynamics, Hydrostatics, Heat, Light, Chemistry, Electricity, with Examination Papers. By W. Gallatly, M.A., Pembroke College, Cambridge, Assistant Examiner at London University. 45.
MATHEMATICAL EXAMPLES. A Collection of Examples in Arithmetic, Algebra, Trigonometry, Mensuration, Theory of Equations, Analytical Geometry, Statics, Dynamics, with Answers, \&c. By J. M. Dyer, M.A. (Assistant Master, Eton College), and R. Prowde Smith, M.A. 6s.

CAMBRIDGE MATHEMATICAL SERIES.

AN ELEMENTARY TREATISE ON GEOMETRICAL OPTICS.

BY THE SAME AUTHOR.

AN ELEMENTARY TREATISE ON SOLID GEOMETRY. 4th edition, revised. Crown 8vo. 68 .

AN INTRODUCTORY TREATISE ON RIGID DYNAMICS. Crown 8vo. 4s.

A CHAPTER ON FRESNEL'S THEORY OF DOUBLE REFRACTION. 2nd edition, revised. 8vo. 2s.
$\operatorname{phos}_{\text {eleminentary treatise }}^{\text {ins an }}$ ON

GEOMETRICAL OPTICS.

W. STEADMAN ALDIS, M.A.,
trinity college, Cambridge, LATE PRINCIPAL OF AND PROFESSOR OF MATHEMATICS IN THE UNIVERSITY COLLEGE, AUCKLAND, NEW ZEALAND.

FIFTH EDITION.

LONDON:
GEORGE BELL AND SONS.
CAMBRIDGE: DEIGHTON, BELL AND CO.
1896

Cambrioge:
PRINTED BY J. \& C. F. CLAY, AT THE UNIVERSITY PRESS.

PREFACE.

The main object of the present treatise is to supply a text-book on Geometrical Optics to students reading for the Mathematical Tripos at Cambridge, who do not wish to proceed much beyond those portions of the subject which are required for the first part of the Tripos Examination.

The investigations are therefore not carried beyond first approximations. The discussion of the position of the foci of obliquely incident pencils has, however, been brought within this boundary, instead of being derived from the second approximations for direct pencils.

The Author hopes that the book may be useful to a wider class of students, not residing in any University, by giving to them a concise view of the mathematical explanation of instruments, with the practical details of which they are familiar.

The Author wishes to express his acknowledgements to several friends, for hints and suggestions, and especially to Mr W. M. Spence, Fellow of Pembroke College, Cambridge, for his valuable assistance in revising the book as it went through the press.

College of Physical Science, Newcastle-upon-Tyne, September, 1872.

The Author is indebted to Professor Hathornthwaite, Elphinstone College, Bombay, for several corrections in the present edition.

University College, Adckland, New Zealand, June, 1893.

CONTENTS.

CHAP. PAGE
I. Laws of Reflection and Refraction 1
II. Reflection and Refraction of Direct Pencils 15
III. Reflection and Refraction of Oblique Pencils 34
IV. On Reflections at Two or more Plane Surfaces 47
V. On Refraction through Prisms and Plates 59
VI. On Refraction through Lenses 76
VII. On Images and Simple Optical Instruments 95
VIII. On Compound Optical Instruments 107
IX. On Dispersion and Achromatic Combinations 129
X. Miscellaneous Theorems 146
XI. The Rainbow 161

AN ELEMENTARY TREATISE

ON

GEOMETRICAL OPTICS.

CHAPTER I.

LAWS OF REFLECTION AND REFRACTION.

1. The subject of Optics divides itself naturally into two distinct parts.

One of these consists in the deduction by geometrical or analytical methods of the consequences of a few well ascertained laws which govern the simplest phenomena of light. The second consists in the explanation of the mechanical or physical causes which produce those phenomena. These two branches of the subject are usually known as Geometrical and Physical Optics respectively, and it is with the former exclusively that the present treatise is concerned. We shall not discuss the physical causes of the propagation of light, but taking certain laws for granted, we shall endeavour to trace out some of their more interesting and useful consequences. It will be necessary to commence with a. few important definitions and explanations.
2. When we are in a place exposed either to the light of the sun or any artificial source of light, we are sensible of the existence of objects surrounding us. If the light of the sun be excluded or the artificial light extinguished, we
A. G. o.
cease to be able to perceive by sight anything that is near to us. Such bodies as the sun or a lighted lamp have therefore the property of rendering us sensible by sight not only of their own existence, but of that of all other bodies on which they shed what we call their light. Bodies which have this power are called self-luminous bodies. On the other hand, bodies which require the presence of some selfluminous body in order to enable us to see them, are called non-luminous or dark bodies.
3. We assume that the sensation of sight is produced by something (not necessarily material) which comes from the thing seen and enters the eye. Experiment shows that it proceeds in straight lines. We assume farther that this something, which we shall in future call light, proceeds to the eye from every material point of any body which is seen. The quantity of light which proceeds from any material point of a body to the eye we shall call a pencil of light. We shall also suppose that the form of this pencil is a cone, whose vertex is the luminous point, and whose base is the portion of the eye which admits light.
4. If we suppose the vertical angle of this cone to be indefinitely diminished, we get a certain quantity of light which may be considered as a straight line, and is called a ray. It is not necessary for our purposes that such a small quantity of light shall be actually able to exist separately, but it is evident that we may suppose the pencils we have before considered to consist of an indefinite number of small portions, such as we have defined as rays.

We may then give the following definitions:
(1) A pencil of light is the portion of light, by means of which a given material point of any object might be seen by an eye suitably placed. It is generally considered to be of a conical form with the material point at its vertex.

If the material point be at an indefinitely great distance, the cone will become a cylinder.
(2) A ray of light is the limiting form of a pencil of light when the solid angle at the vertex of the cone is indefinitely dirninished. It is usually considered to be a line; and in accordance with a remark previously made, it is a
straight line as long as it continues in the same medium. A pencil is conceived to be made up of an infinite number of such rays.
5. We know by experience that if there be nothing but air or vacuum between us and any luminous object, the light of that object is able to reach our eyes. If we interpose a piece of glass, or ice, or a rectangular vessel of glass containing clear water between our eyes and the luminous object, the light is still able to produce the sense of sight.

If, on the other hand, we hold up a piece of wood or iron between our eyes and the object, the latter becomes invisible to us, the light not being able to traverse the wood or iron.

We thus get an optical distinction between different classes of bodies. Some bodies permit light to traverse them more or less freely and regularly: others refuse to allow it to pass at all. Bodies of the former class are called transparent bodies; of the latter, opaque.
6. There are some bodies, as alabaster, porcelain, which, when held up between our eyes and a strongly luminous body, as the sun, allow light to pass in an irregular way, but do not permit us to see the luminous body distinctly. Such bodies are called translucent. Light transmitted through such bodies will not be farther considered in this book, as it obeys no simple geometrical laws.
7. When a body is considered with reference to its power of transmitting light, it is usually called a medium.
8. When a pencil of light proceeding in one medium is incident on the surface of another transparent medium, it is usually divided into three parts.
(1) A portion is reflected back into the original medium according to \dot{i} law to be hereafter stated.
(2) A portion passes into the new medium according to another law to be hereafter stated, and is said to be refracted into the new medium.
(3) A third portion is employed in rendering visible the surface which separates the two media.

$$
1-2
$$

For instance, when the sun is shining on a window, the sun's light comes through the air, and is incident on the plane surface of the glass. Some of this light goes into the glass, and again passes out into the air on the other side, as is proved by the luminous patch resembling in its general shape the window, which is seen within the room; and also by the fact that an observer within the room can see the sun distinctly. This is the second or refracted portion.

Some of the light is reflected externally, as is shown by the fact that an observer outside the room can see the sun's image reflected in the window just as in a looking-glass, only not so vividly.

This is the first or reflected portion.
A third portion is employed in rendering the window visible, and is said to be scattered. The observer outside will be able to see the specks and marks on the surface of the glass by means of this portion. If the glass of the window were perfectly smooth and clean, this portion would probably not exist, and the whole of the light would be either reflected or refracted.

We shall at present only consider the reflected and refracted portions.
9. Before stating the laws which regulate the directions of the reflected and refracted portions corresponding to a given incident pencil, we must define a few terms which will be of constant occurrence.

The straight line drawn at right anglês to a plane at a given point is called the normal to the plane at that point.

We know, from the example of the earth, which is really spherical, but of which any small portion appears to be a plane, that any portion of a spherical surface sufficiently small in comparison with the size of the whole sphere may be considered as a plane. The normal to a spherical or other curved surface at any point is the line drawn through that point at right angles to the plane, with which the small part of the surface immediately surrounding this point may be supposed to coincide. In the case of a sphere the reader must assume, if it be not obvious to him, that the normal at
any point is the straight line joining that point with the centre of the sphere.
10. If a ray of light in its progress from the original point from which it emanates comes to the surface of a different medium from that in which it is at first propagated, it is said to be incident on the second medium.

In this case the plane containing the incident ray and the normal to the surface which separates the second medium from the first is called the plane of incidence of the ray.

The angle between the incident ray and the normal to the bounding surface is called the angle of incidence of the ray.
11. When a ray is so incident, the following laws govern the directions of the two portions of it which are respectively reflected and refracted.
(1) The reflected and refracted rays both lie in the plane of incidence of the original ray and on the opposite side of the normal to the surface to that on which the incident ray lies.
(2) The angle which the reflected ray makes with this normal is equal to the angle which the incident ray makes with the normal. If we agree to call the angle between the reflected ray and the normal the angle of reflection, this law may be concisely stated thus-the angles of incidence and reflection are equal.
(3) The sine of the angle which the incident ray makes with the normal bears a constant ratio to the sine of the angle which the refracted ray makes with the normal to the surface; constant, that is, for the same kind of light and the same media.

This constant ratio is called the index of refraction or refractive index from the first medium into the second.

If the first medium be a vacuum, this constant ratio is called the absolute index of refraction of the second medium.

If the second medium be denser in substance than the first, this ratio or refractive index is greater than unity; as, fur instance, when light passes from air to glass.
12. Thus, for instance, let us suppose the plane of incidence of a ray PO to coincide with the plane of the paper, and let $N O N^{\prime}$ be the normal to the surface dividing the media, at the point O where the ray is incident. Let $A O B$ be the line of intersection of this bounding surface with the plane of the paper.

By the first law, the reflected ray $O Q$ and the refracted ray $O R$ will both lie in the plane of the paper, and to the left of $O N$, as we have drawn $O P$ to the right of $O N$. Also $O Q$ lies above $A O B$ and $O R$ lies below $A O B$.

The angle $P O N$ is the angle of incidence.
The angle $N O Q$ is the angle of reflection.
The angle $N^{\prime} O R$ is the angle of refraction.
If we call these angles $\phi, \phi^{\prime \prime}, \phi^{\prime}$ respectively we have by the second law
and by the third law

$$
\phi=\phi^{\prime \prime},
$$

$$
\frac{\sin \phi}{\sin \phi^{\prime}}=\text { a constant which we may call } \mu \text {. }
$$

Thesé equations determine $\phi^{\prime \prime}$ and ϕ^{\prime} when ϕ is known.
If the second medium be of a denser nature than the first, μ is greater than unity, as has been already remarked;
ϕ is consequently greater than ϕ^{\prime}. Thus, in passing into a denser medium a ray of light is bent towards the normal to the bounding surface; on the other hand, in passing from a denser medium into one less dense, the light is bent away from the normal.
13. It is usual to consider separately the two portions into which the ray is divided, and to speak of a ray as reflected, or refracted, at a given surface when we mean that we are only going to discuss the position and direction of the reflected or refracted portions respectively.
14. It is found experimentally that if a ray $P O$ when incident on the surface of a second medium be refracted in the direction $O R$, a ray coming in the second medium in the direction $R O$ will be refracted along the line $O P$.

If we call the two media A and B respectively, and denote by ${ }_{A} \mu_{B}$ the index of refraction from the first medium into the second, and by ${ }_{B} \mu_{A}$ the index of refraction from the second medium into the first, we have with our previous notation
whence

$$
\begin{align*}
& \frac{\sin \phi}{\sin \phi^{\prime}}={ }_{A} \mu_{B}, \\
& \frac{\sin \phi^{\prime}}{\sin \phi}={ }_{B} \mu_{A}, \\
& { }_{B B} \mu_{A}=\frac{1}{{ }_{A} \mu_{B}} \tag{1}
\end{align*}
$$

Again, it is found by experiment that a ray of light after passing through any number of media bounded by paralle] planes, as for instance through a number of plates of glass of different kinds, when it comes again into a medium of the same nature as that from which it originally was incident on the plates, will be in a direction parallel to its original one.

Thus let A be the original medium, and let $P Q R S T$ be the course of a ray in passing through portions of two media B and C bounded by parallel planes.

Let ϕ be the angle of incidence on B, ϕ_{1} the angle of refraction into B; it is evident that ϕ_{1} will also be the angle
of incidence on C. Let ϕ_{2} be the angle of refraction into C, which will also be the angle of incidence on A, while by the

above remarks ϕ will be the angle of refraction into A again. Then we have, with the notation explained above,

$$
\begin{gathered}
\frac{\sin \phi}{\sin \phi_{1}}={ }_{A} \mu_{B}, \frac{\sin \phi_{1}}{\sin \phi_{2}}={ }_{B} \mu_{C}, \frac{\sin \phi_{2}}{\sin \phi}={ }_{c} \mu_{A}, \\
\therefore{ }_{A} \mu_{B} \times{ }_{B} \mu_{\sigma} \times{ }_{C} \mu_{A}=1
\end{gathered}
$$

which, since by means of equation (1)

$$
{ }_{A} \mu_{c}=\frac{1}{{ }_{c} \mu_{A}}
$$

gives us

$$
\begin{equation*}
{ }_{A} \mu_{C}={ }_{A} \mu_{B} \times{ }_{B} \mu_{C} \tag{2}
\end{equation*}
$$

This equation serves to connect the relative index of refraction between two media with their absolute refractive indices.

Thus let ${ }_{r} \mu_{A}$ be the index of refraction from vacuum into A, that is the absolute refractive index of A (Art. 11), and let ${ }_{v} \mu_{B}$ be similarly the absolute refractive index of B. Theu by the above equation

$$
{ }_{v} \mu_{A}={ }_{v} \mu_{B} \times{ }_{B} \mu_{A},
$$

$$
\text { Similarly, or by (1), } \left.\quad \therefore{ }_{B} \mu_{A}=\frac{{ }^{\nu} \mu_{A}}{\tau \mu_{B}} .\right\}
$$

These results (1), (2), (3) are of considerable importance.
15. Let us again consider the equation
or

$$
\begin{aligned}
\sin \phi & =\mu \sin \phi^{\prime}, \\
\sin \phi^{\prime} & =\frac{1}{\mu} \sin \phi,
\end{aligned}
$$

which connects the angles which the directions of the ray in the first and second medium respectively make with the normal to the separating surface. Assume also that μ is greater than unity, so that the second medium is denser than the first.

It is evident that, if ϕ be given, since $\sin \phi^{\prime}$ is less than $\sin \phi$, and therefore less than unity, a real value of ϕ^{\prime} can always be found. Hence if a ray of light be incident from a rarer medium on a denser, the ordinary law of refraction always gives a direction for the refracted ray.

If, on the other hand, ϕ^{\prime} be given, $\sin \phi$ may happen to be greater than unity and no real value of ϕ can be found. This will be the case if

$$
\sin \phi^{\prime}>\frac{1}{\mu},
$$

and for values of ϕ^{\prime} exceeding the value given by the equation

$$
\sin \phi^{\prime}=\frac{1}{\mu} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(1),
$$

no direction for the refracted ray is given by the ordinary law.

In the case of any two media, the greatest angle at which a ray, proceeding in the denser medium, can be incident on the rarer so as to be refracted into the rarer, is called the critical angle between those media. Its value is given by the
equation (1), where μ indicates the refractive index from the rarer to the denser medium.

If the rarer medium be a vacuum, μ will be the absolute refractive index of the denser medium and the corresponding critical angle is called the absolute critical angle, or sometimes simply the critical angle of the denser medium.
16. It is found by experiment that when a ray of light is incident on a medium rarer than that in which it is moving, at an angle greater than the critical angle between those media, the whole of the light is reflected ; the refracted portion does not exist. This is known as the phenomenon of total internal reflection.
17. We have hitherto considered the second medium to be a transparent medium capable of transmitting light. If it be opaque, as when light is incident on the polished surface of metal, the refracted portion does not exist, or, at any rate, does not make us sensible of its existence. There is however in this case a reflected ray following the laws given in Art. 11. The amount of light in the reflected ray is not so great as in the incident ray, and is much less than in the case of total internal reflection given in the last Article.

We have thus far considered the modification produced in a single ray by reflection or refraction at a surface. We have to consider in the next Chapter the more complicated changes produced in a pencil by such refractions or reflections.

EXAMPLES. CHAPTER I.

v. 1. Find the angle of refraction, when a ray is refracted from vacuum into a medium whose refractive index is $\sqrt{ } 2$, the angle of incidence being 45°.
2. The angle of incidence being 60°, and the index of refraction being $\sqrt{ } 3$; find the angle of refraction.
3. The absolute refractive indices of two media being $\sqrt{ }(5)-1$ and 2 respectively, find the angle of refraction of a ray incident in the first medium on the second; the angle of incidence being 30°.
4. A person looking over the rim of a cylindrical cup is unable to see the bottom. When water is poured in, part of the base of the cup becomes visible. Explain this.
5. The height of a cylindrical cup is 4 inches, the diameter of its base is 3 inches. A person looks over its rim so that the lowest point of the opposite side which he can see is $2 \frac{1}{4}$ inches below the top. The cup is filled with water; looking in the same direction he can just see the point of the base farthest from him. Find the refractive index of water.
6. A ray of light is incident on a refracting surface whose refractive index is μ, at an angle $\tan ^{-1} \mu$. Show that the angle of refraction is $\tan ^{-1} \frac{1}{\mu}$.
7. A ray of light is incident on a refracting sphere, whose refractive index is $\sqrt{ } 3$. It is refracted into the sphere, and when it is incident on the inner surface of the sphere, part is reflected internally, and part is refracted out into vacuum. Show that if the original angle of incidence be 60°, these two parts are at right angles to each other.
8. In the last question, show that if the part internally reflected be again incident internally and be refracted out into vacuum, its final course will be parallel to that of the ray first incident.
9. A ray is incident on a refracting sphere whose refractive index is $\frac{3}{2}$, at an angle whose sine is $\frac{3 \sqrt{ } 3}{4 \sqrt{ } 2}$. Show that if the ray be refracted into the sphere, that portion of it which emerges after having been twice internally reflected will be in the same direction as the original ray.
10. Show that a pencil of light emanating from the focus of a prolate spheroid whose inner surface is reflecting, will be accurately reflected to a point. Show also that a pencil of light emanating from the focus of a paraboloid of revolution whose concave surface is reflecting, will be reflected as a pencil of parallel rays.
11. A luminous point is placed at the focus of an ellipse, the inner side of which can reflect light. Prove that any ray after two reflections from the curve will return to the focus from which it started, and will have travelled over a distance equal to twice the axis major of the ellipse.
12. A ray passes through four media whose absolute refractive indices are $\sqrt{ } 3, \sqrt{ } 6, \sqrt{ } 2$, and $\frac{\sqrt{ } 15+\sqrt{ } 3}{\sqrt{ } 2}$ respectively, the angle of incidence on the second medium from the first being 45°. Find the angles of refraction into the second, third, and fourth media respectively.
13. A ray proceeding from a point P, and incident on a plane surface at O, is partly reflected to Q, and partly refracted to R : if the angles POQ, POR, QOR be in Arithmetic Progression, find the angle of incidence, μ being the index of refraction. Explain the result when $\mu=2$.
14. If the angles $P O Q, Q O R$ and $R O P$ be in Arithmetic Progression, in the last question, find the angle of incidence.
15. $A B C$ is a triangle, the interior of the sides of which can reflect light. In the side $B C$ are two small holes at P and Q. Find the position of a point outside the triangle, such that a ray of light proceeding from it so as to enter through P may be reflected so as to pass out through Q, and also a ray from it entering through Q may be reflected out through P.
16. A ray of light is incident on a concave refracting spherical surface of radius r. Its direction before refraction cuts the axis of the surface at a distance μr from the centre of the sphere. Show that after refraction its direction will cut the axis at a distance $\frac{r}{\mu}$ from the centre of the sphere.
17. A ray of light proceeds from one point P of an ellipse, and falls upon a reflecting plane at one focus. Find the position of the plane, that after reflection the ray may pass through a given point Q of the ellipse.
18. If a ray proceeding from the extremity of one diameter of an ellipse be reflected at the curve so as to pass
through the other extremity of this diameter; prove that the length of the path of the ray is the same whatever diameter be taken.
19. In the last question, prove that, if ϕ, ϕ^{\prime} be the eccentric angles of the extremity of the diameter and the point where the reflection takes place, $\tan \phi \cdot \tan \phi^{\prime}=-\frac{b^{2}}{a^{2}}$; a and b being the semiaxes of the ellipse.
20. A ray of light emanating from a point P of an ellipse, after one reflection at the inner side of the curve, is again reflected at the opposite extremity of the diameter through P. Prove that after another reflection it will return to P, and then retrace its path, having described a parallelogram.
21. A ray of light is incident upon a refracting sphere, whose refractive index is $\sqrt{ } 3$. The refracted ray and the incident ray produced cut the sphere in points the arc joining which subtends an angle of 60° at the centre. Find the angle of incidence.
22. The length of the path of a ray which passes through two plates of different media in contact, bounded by parallel planes, is $a \sqrt{ } 3$ in the first medium and $2 c$ in the second. The thicknesses of the plates being a and c respectively, find the refractive index from the first plate into the second.
23. Prove that light which has been refracted into a sphere from vacuum can never be totally internally reflected.
24. If light be incident on the curved surface of a hemisphere of a refracting medium in a direction parallel to its axis, show that there will be no total internal reflection at the plane surface, unless the refractive index is greater than $\sqrt{ } 2$.
25. Three plane mirrors are placed so as to be all perpendicular to the same plane, their intersections with which form an acute-angled triangle; a ray proceeding from a certain point in this plane after one reflection at each of the mirrors proceeds on its original course. Show that the point must lie on the perimeter of the triangle formed by joining the
feet of the perpendiculars from the angular points of the original triangle on the opposite sides.
26. A ray of light is incident on a portion of a refracting medium in the shape of a prolate spheroid; the eccentricity of the generating ellipse is e, and the refractive index is $\frac{1}{e}$. The ray being incident parallel to the axis of the spheroid, show that after refraction it will pass through one focus.
27. A pencil of rays emanates from a point at a distance μr from the centre of a refracting sphere whose radius is r and refractive index μ. Prove that the extreme incident rays on emergence intersect a screen touching the sphere at the point opposite to the origin of light, in a circle, whose radius is

$$
\frac{2-\mu}{2+\mu} \sqrt{ }\left(\frac{\mu+1}{\mu-1}\right) \cdot r .
$$

28. If a ray of light be reflected at a plane surface, the incident and reflected rays make equal angles with any line lying in that plane.
29. If a ray of light be refracted at a plane surface, the cosines of the angles which the incident and refracted rays respectively make with any straight line lying in that plane are in a constant ratio.
30. Rays proceeding from the vertex of a parabola are reflected, each one at the diameter where it meets the curve. Prove that the reflected rays all touch a parabola of eight times the dimensions of the given parabola.

CHAPTER II.

REFLECTION AND REFRACTION OF DIRECT PENCILS.

18. If we consider a pencil as made up of an infinite number of rays all proceeding from a common point, it is clear that if such a pencil moving in one medium be incident on the surface of a second medium, it would be theoretically possible to calculate the direction of the refracted and reflected rays corresponding to each incident ray, and by considering the assemblage of these rays to obtain an idea of the form and position of the reflected and refracted pencils. The difficulties of calculation are however too great to allow this ordinarily to be done ; and we have to content ourselves with approximations.

Approximate results can in all practical cases be obtained, so near to the truth that they represent the observed phenomena as accurately as the eye can discern them.

In practice the only surfaces at which reflection or refraction takes place in optical instruments are plane or spherical surfaces, or small portions of surfaces of revolution which are symmetrical with respect to the axis of revolution. These last can be always considered to coincide with portions of a sphere which has the same curvature as the surface of revolution at its vertex.

We shall therefore only consider the cases of plane and spherical surfaces.
19. In one case of great importance the accurate form and position of the reflected pencil can be obtained; namely,
when a pencil of light is reflected at a plane reflecting surface.

Let O be the origin of light, that is, the vertex of the cone which is the pencil of light.

Let $O A$ and $O B$ be the two extreme rays of the pencil in any section of the pencil by a plane through its vertex and perpendicular to the plane of the mirror. Let $O C$ be any other ray in this section. Let $H A B$ be the plane surface at which reflection takes place.

Draw $O H$ perpendicular to $H A B$ and produce it to O^{\prime}, making $H O^{\prime}$ equal to $H O$. Join $O^{\prime} C$, and produce it to R.

Then it is evident that the triangles $O H C, O^{\prime} H C$ are equal in all respects, and therefore that the angles COH , ${ }^{\prime} O^{\prime} H$ are equal. But these are equal to the angles which $O C, C R$ respectively make with $C N$ the normal to $H A B$ at C. Hence $O C$ being the incident ray, $C R$ will be the direction of the reflected ray.

The reflected rays corresponding to the different incident rays will thus all pass through the point O^{\prime}, and the reflected pencil which is made up of all these reflected rays will be a cone with O^{\prime} as vertex, and with that portion of the reflecting surface on which the incident rays fall for its base.
20. Thus if $C D$ be a plane reflecting surface of any kind, as for instance the surface of the still water of a pond, and

A be any point which emits light, some portion of that light will fall on the part $P Q$ of $C D$ and be reflected in the form of a cone whose vertex is a point A^{\prime}, obtained by drawing $A H$ perpendicular to $C D$ and making $H A^{\prime}$ equal to $H A$. An eye suitably placed, as at E, will receive the reflected pencil precisely as if the light did really proceed from A^{\prime}, and will therefore see a luminous point at A^{\prime} similar to the original point at A.

If there be a series of points above the mirror, each of them will have its corresponding point below the mirror, and thus the eye will see an exact copy of anything above the mirror, inverted and at the same distance below the mirror, as the original object is above. This explains the reflection of trees, houses, \&c., seen in the surface of a still lake or river.
21. In the last Article it is evident that the amount of light, or the size of the pencil, which is employed in giving vision of the point A or A^{\prime}, is really limited by the size of the aperture of the eye. The size of the pencil in other cases is sometimes determined by the eye which finally receives it, but more frequently, in the case of any complicated series of refractions and reflections, by the size of some one or other of the reflecting or refracting surfaces on which the light falls.
A. G. o.

In all cases which we shall have to consider, the pencils will be very slightly divergent, that is, the solid angles of the cones of light considered will be very small.
22. The central ray of the pencil, or more strictly the geometrical axis of the cone of light, is called the axis of the pencil.

In any case of reflection or refraction, when the axis of the pencil coincides with the normal to the refracting or reflecting surface at the point of incidence of the axis, the pencil is said to be directly incident on the surface.

If the axis of the pencil do not coincide with the normal to the surface at the point of incidence, the pencil is said to be obliquely incident.

Thus, the axis of the pencil by which the point A is seen in the figure of Art. 20, is obliquely incident on the inirror $C D$.
23. We shall first consider the effect of reflection and refraction when a small pencil is directly incident on a plane or spherical surface.

The first case, that of a pencil of any size reflected at a plane surface has been discussed in Art. 19. The reflected rays will form a cone whose vertex is at a point as far behind the mirror as the original point is in front of it.
24. Secondly, we have to consider the case of a pencil of light whose axis is directly incident on a plane surface capable of refracting light.

Let $A R$ be a portion of the refracting surface, $Q A$ the axis of the incident pencil, $Q R$ any other ray of the pencil; $N R N^{\prime}$ the normal to the surface at R, which is of course parallel to $A Q$.

Let μ be the index of refraction from the first medium into the second. Then by the law of refraction, if $R S$ be the refracted ray, we have

$$
\begin{aligned}
& \sin Q R N=\mu \sin S R N^{\prime \prime}, \\
& \sin R Q A=\mu \sin R q A,
\end{aligned}
$$

if $S R$ produced meet $A Q$ in q,
or

$$
\begin{align*}
& \frac{A R}{R Q}=\mu \cdot \frac{A R}{R q}, \\
\therefore \quad & R q=\mu \cdot R Q \ldots \tag{1}
\end{align*}
$$

This equation gives a relation by which the distance from A of the point where the refracted ray produced back-

wards meets the axis of the incident pencil can be determined. It is quite clear that the axis $Q A$ of the incident pencil is also the axis of the refracted pencil, since the refracted rays will be symmetrically placed with respect to this line.

It can be shown by means of equation (1) that if the position of R change, that of q will also change. Thus the refracted rays do not all accurately pass through one point; and the refracted pencil is not accurately of a conical shape.

Nevertheless, if the miginal pencil be small, as is the case in all, or nearly all, the pencils we have practically to employ in optical instruments; by supposing $A R$ very small, we shall find a limiting position of q, such that the rays of the refracted pencil will all very nearly pass through it, and which may thus be considered as approximately the vertex of the refracted pencil.

$$
2-2
$$

If we make R to approach indefinitely near to A, and F to be the limiting position of q, we get from (1)

$$
A F=\mu . A Q .
$$

$A Q$ is usually denoted by the letter u, and $A F$ by the letter v : this equation then becomes

$$
\begin{equation*}
v=\mu u . \tag{2}
\end{equation*}
$$

25. In any case of direct refraction or reflection the axis of the incident pencil is also the axis of the reflected or refracted pencil.

The point which may be considered as approximately the vertex of the reflected or refracted pencil is obtained as in the last Article, and is called the geometrical focus of the pencil after refraction or reflection.

The geometrical focus of a pencil after direct refraction or reflection may be defined as the limiting position of the point of intersection of any refracted or reflected ray with the axis of the pencil, when the point of incidence of the ray in question approaches indefinitely near to the point of incidence of the axis.
26. We have next to examine the position of the geometrical focus of a pencil directly reflected at a spherical surface.

Let $Q A$ be the axis of a pencil directly incident on a spherical reflecting surface. The incidence being direct, $Q A$ is the normal at A, and O the centre of the sphere must consequently lie in $A Q$.

Let $Q R$ be any ray of the pencil, incident at R. Join $O R$, and draw $R q$ so as to make the angle $O R q$ equal to

the angle $O R Q$, then it is clear that $R q$ will be the reflected ray.

As R approaches A, the point q, in which $R q$ cuts $A Q$, will assume some limiting position. Let this be F. Then F is the geometrical focus whose position is required.

Since the angle $O R Q$ is equal to the angle $O R q$ we have by Euclid, vi. 3,

$$
Q O: O q:: Q R: R q \text {, }
$$

or in the limit when R approaches indefinitely near to A, and consequently q to F,

$$
\begin{equation*}
Q 0: O F:: Q A: A F \tag{1}
\end{equation*}
$$

Let $\quad A O=r, \quad A Q=u, \quad A F=v$.
Then from (1) $r-u: v-r:: u: v$,

$$
\begin{aligned}
\therefore \quad(r-u) v & =(v-r) u, \\
& \therefore r v+r u=2 u v,
\end{aligned}
$$

or dividing by urv,

$$
\begin{equation*}
\frac{1}{v}+\frac{1}{u}=\frac{2}{r} \tag{2}
\end{equation*}
$$

We have drawn the mirror concave, and have supposed the points Q and q to be on the same side of A as the centre of the surface.

It will be found that the formula (2) will be universally true whatever may be the relative positions of the points A, Q, O and F, if the convention be adopted that lines measured in one direction from A, say to the right of A, shall be considered positive, and lines measured from A in the opposite direction shall be considered negative.
27. For instance, if the mirror be convex as in the figure, we still have from the law of reflection, by Euclid, vi. a,

$$
Q 0: O q:: Q R: R q \text {, }
$$

or in the limit $\quad Q O: O F:: Q A: A F$,
and writing $-r$ for $O A,+u$ for $A Q$, and $-v$ for $A F$, we have

$$
\begin{aligned}
& \quad u-r: v-r:: u:-v, \\
& \therefore \quad v(r-u)=u(v-r),
\end{aligned}
$$

as before.

The student may draw other figures for himself, and verify that in every case the formula (2) of the last Article holds.
28. It is sometimes convenient to take the centre of the spherical surface as point of reference. In this case we shall take the figure of the last Article as the typical one, because in that figure all the distances involved are measured from 0 in one direction, and may be considered positive.

Let $\quad O A=r, \quad O Q=p, \quad O F=q$.
Then since $Q O: O F:: Q A: A F$,
we have

$$
p: q:: p-r: r-q
$$

whence

$$
p(r-q)=q(p-r)
$$

or

$$
p r+q r=2 p q
$$

whence

$$
\frac{1}{p}+\frac{1}{q}=\frac{2}{r}
$$

This formula, like that in Art. 26, can be adapted to all cases by the convention with regard to signs explained in Art. 26.
29. We have finally to investigate the position of the geometrical focus of a pencil directly incident on a spherical refracting surface.

Let 0 be the centre of the sphere, Q the vertex of the cone of light whose axis is incident at A. Since the incidence is direct, $Q A$ coincides with $0 A$.

Let $Q R$ be any ray of the pencil, incident at R, and $R S$ the corresponding refracted ray. - Produce $R S$ backwards to meet $A Q$ in q, and let F be the limiting position of q when R approaches very near to A.

By the law of refraction, if μ be the refractive index,

$$
\begin{gathered}
\sin Q R O=\mu \sin q R O \\
\therefore \quad \frac{Q O}{Q R} \cdot \sin Q O R=\mu \cdot \frac{q O}{q R} \sin q O R:
\end{gathered}
$$

or

$$
Q O \cdot q R=\mu \cdot q O \cdot Q R
$$

Hence in the limit when R approaches very near to A, and q to F,

$$
Q O . F A=\mu F O \cdot Q A
$$

whence, if

$$
\begin{gathered}
A O=r, \quad A Q=u, \quad A F=v, \\
\quad(r-u) v=\mu(r-v) u, \\
\therefore \quad \mu r u-r v=(\mu-1) u v,
\end{gathered}
$$

or dividing by urv $\frac{\mu}{v}-\frac{1}{u}=\frac{\mu-1}{r}$.
30. The formula proved in the last Article is of fundamental importance. It virtually contains all that have been given before.

Thus we may consider a plane surface as the limiting form of a sphere whose radius is infinite; and thus by making r infinite, we shall get the geometrical focus for a pencil of light directly incident on a plane refracting surface. The formula of the last Article becomes in this case,
or

$$
\begin{gathered}
\frac{\mu}{v}-\frac{1}{u}=0 \\
v=\mu u
\end{gathered}
$$

the formula of Art. 24.
Again it is found, and the reason will be given in the next Article, that any formula for refraction will give the corresponding formula for reflection, by giving to μ the value -1 . Thus the formula for the geometrical focus of a pencil of light, directly reflected at a spherical surface, will be obtained from that of the last Article by this substitution. The formula becomes
or

$$
\begin{gathered}
-\frac{1}{v}-\frac{1}{u}=-\frac{2}{v} \\
\frac{1}{v}+\frac{1}{u}=\frac{2}{r}
\end{gathered}
$$

the same as in Art. 26.
For reflection at a plane surface we either make r infinite in this last formula, or put μ equal to -1 in the formula. $v=\mu u$. Either of these methods gives

$$
v=-u
$$

agreeing with the geometrical result of Arts. 19 and 23.
31. The derivation of formulæ for reflection fiom corresponding formulæ for refraction by the substitution of -1 for μ can be explained by the following considerations.

Let $P Q$ be any ray incident on a refracting surface at Q, and let $Q R$ be the corresponding refracted ray. Let $Q N$ be the normal drawn internally.

Then by the law of refraction $Q R$ is drawn above $Q N$ at an angle ϕ^{\prime} determined by the equation

$$
\begin{equation*}
\sin \phi^{\prime}=\frac{1}{\mu} \sin \phi \tag{1}
\end{equation*}
$$

where ϕ is the angle of incidence.

In this equation, put $\mu=-1$,

$$
\begin{aligned}
\therefore \quad \sin \phi^{\prime} & =-\sin \phi, \\
\therefore \quad \phi^{\prime} & =-\phi .
\end{aligned}
$$

Now as a positive value of ϕ^{\prime} indicates a line drawn at an angle ϕ^{\prime} above $Q N$, a negative value of ϕ^{\prime} will indicate a line drawn below QN. Hence consistently with the usual geometrical interpretation of positive and negative, the line given geometrically by the equation (1) when $\mu=-1$ is a line $Q S$ below $Q N$, inclined to $Q N$ at an angle equal to the angle of incidence, that is, the equation in that case determines the direction of the reflected ray produced. Hence all formulæ which give the point of intersection of a refracted ray with a given line, will determine the corresponding point in the case of a reflected ray by the substitution $\mu=-1$.
32. We have now determined the position of the vertex of a pencil of light after refraction or reflection, when directly incident on a plane or spherical surface.

Before proceeding to examine the case of obliquely incident pencils, we must consider a little farther the formulæ of Arts. 26 and 29.
33. Taking the formula

$$
\frac{1}{v}+\frac{1}{u}=\frac{2}{r},
$$

which connects the distances of Q and F from A in the case of a reflecting spherical surface, we see first that the points Q and F are interchangeable, that is, if Q move to where F is at any time, F will move to where Q was previously.

The points Q and F are sometimes called conjugate foci.
When the original pencil consists of parallel rays Q is at an indefinitely great distance and $\frac{1}{u}=0$. Hence $A F$ or $v=\frac{r}{2}$.

This position of the point F is sometimes called the principal focus of the reflecting surface.

Similarly from the formula,

$$
\frac{\mu}{v}-\frac{1}{u}=\frac{\mu-1}{r} \text {, }
$$

putting $u=\infty$, or $\frac{1}{u}=0$, we get $v=\frac{\mu r}{\mu-1}$.
The point \dot{F} whose distance from A is thus determined is called the principal focus of the refracting surface.
34. Again, taking the formula

$$
\frac{1}{v}+\frac{1}{u}=\frac{2}{r},
$$

it is easy to trace out the changes in the position of F corresponding to various positions of Q.

First we may notice that if u increases, v must decrease, since $\frac{1}{v}+\frac{1}{u}$ remains of invariable value. Hence Q and F move in opposite directions.

When Q is at an infinite distance to the right hand, $v=\frac{r}{2}$, and hence F is at a point F_{1} half-way between A and 0 .

As Q moves up towards O, F also moves towards O, and at O they coincide ; for when $u=r, v=r$.

When Q moves from O to F_{1}, F moves from O to a great distance to the right, and when Q is at $F_{1}, u=\frac{r}{2}, \therefore v=\infty$, and the reflected rays are parallel.

When Q is between F_{1} and A, F moves up from a great distance to the left towards A, v being negative, since $u<\frac{r}{2}$, and consequently $\frac{1}{u}>\frac{2}{r}$.

When Q is indefinitely near to $A, \frac{1}{u}$ is very large and positive, and therefore $\frac{1}{v}$ must be very large and negative. Thus F must approach indefinitely near to A, and when Q reaches A, F also reaches A.

When Q is to the left of A (which can only be the case when, by some artificial process of refraction or reflection, we have made a pencil of light converge to a point behind A), u is negative, and v will be positive and $<\frac{r}{2}$. Hence F^{\prime} lies between A and F_{1}. As Q moves farther to the left, F approaches nearer to F_{1}, till when Q has got to a point at an infinite distance to the left of $A, u=\infty$, and F coincides again with F_{1}.
35. From the formula

$$
\frac{\mu}{v}-\frac{1}{u}=\frac{\mu-1}{r},
$$

we see that in the case of refraction at a spherical surface u and v must increase or decrease together. Hence Q and F move in the same direction.

The student can easily verify the following facts.
(1) When Q is at an infinite distance to the right of A, F is at a point F_{1} such that $A F_{1}=\frac{\mu r}{\mu-1}$.
(2) As Q moves from an infinite distance up to $0, \checkmark$ F moves from F_{1} to 0 , and at 0 they coincide.
(3) As Q moves from 0 to A, F also moves from 0 to A, being nearer to 0 than Q is, and at A, Q and F again coincide.
(4) As Q moves from A to a point F_{2} at a distance, $\frac{r}{\mu-1}$ to the left of A, F moves from A to an infinite distance to the left of A.
(5) As Q moves from F_{2} to an infinite distance to the left of A, F moves from an infinite distance to the right of A up to the point F_{1} previously mentioned.
36. In the two preceding Articles the concavity of the spherical surfaces has been supposed turned to the right. An exactly similar investigation will apply when the concavity is turned to the left.

The student who is familiar with the elements of Plane Co-ordinate Geometry can illustrate these Articles by means of the equation of a straight line. Thus the equation

$$
\begin{equation*}
\frac{x}{u}+\frac{y}{v}=1 \tag{1}
\end{equation*}
$$

represents a straight line of which the intercepts on the axes are u and v. The condition that this line should pass through a point $\left(\frac{1}{2} r, \frac{1}{2} r\right)$ is
or

$$
\begin{gather*}
\frac{\frac{1}{2} r}{u}+\frac{\frac{1}{2} r}{v}=1 \\
\frac{1}{u}+\frac{1}{v}=\frac{2}{r} \tag{2}
\end{gather*}
$$

Hence, if a straight line be drawn through the point $\left(\frac{1}{2} r, \frac{1}{2} r\right)$ and be made to revolve through two right angles in the direction opposite to the hands of a clock starting from a position parallel to the axis of x, the successive intercepts on the axis of x will represent the successive values of u from $-\infty$ to $+\infty$, and the corresponding intercepts on the axis of y will give the corresponding values of v.

By making (1) pass through the point $\left(-\frac{r}{\mu-1}, \frac{\mu r}{\mu-1}\right)$ and revolve in the same way the results of Art. 35 can be geometrically deduced.
37. It is sometimes convenient to replace the formula of Art. 29 by a formula giving the distances of the conjugate foci from the centre of the surface instead of from the point A. In this case we shall draw a figure with the spherical surface concave to the left, in order that all the lines may be positive.

Let $Q R$ be any ray of the pencil, incident at $R, R S$, produced backwards to meet the axis in q, the corresponding

refracted ray. Let F be the limiting position of q when R comes to A.

Then as before

$$
\sin Q R N=\mu \sin q R N,
$$

$$
\begin{aligned}
\therefore & \frac{Q O}{Q R} \sin Q O R=\mu \frac{q O}{q R} \sin q O R, \\
& \therefore Q O \cdot q R=\mu \cdot q O \cdot Q R,
\end{aligned}
$$

or in the limit

$$
Q O \cdot F A=\mu \cdot F O \cdot Q A .
$$

Let $O Q=p, O A=r, O F=q$,

$$
\begin{gathered}
\therefore p(q-r)=\mu q(p-r), \\
\frac{\mu}{p}-\frac{1}{q}=\frac{\mu-1}{r} .
\end{gathered}
$$

whence
This formula may be instructively compared with the formula

$$
\frac{\mu}{v}-\frac{1}{u}=\frac{\mu-1}{r},
$$

of Art. 29.
The two formulæ are identical in form, p and q being replaced by v and u; an alliterative way of remembering the substitution. In either case, of the two letters involved, the first in alphabetical order refers to the incident pencil, and the other to the refracted pencil. Thus if the student remember either formula accurately, he will easily obtain the other.

EXAMPLES ON CHAPTER II.

1. A stick partly immersed in water appears bent upwards at the point where it meets the water. Explain this.
2. A stick is partly immersed in water, being inclined to the horizon at an angle whose tangent is $\frac{4}{3 \sqrt{ } 3}$. Find at what angle the part which is under water will appear to be inclined to the horizon, to an eye placed at some distance vertically above the stick; the refractive index of water being $\frac{4}{3}$.
3. A pencil of light is incident directly on a refracting sphere of radius a, whose refractive index is $\frac{3}{2}$. Find the position of the geometrical focus of the refracted pencil, the origin of light being at a distance of $4 a$ from the centre of the sphere.
4. A speck at the back of a plate of glass, one inch thick, is looked at by an eye placed just in front of the plate. Find at what distance the eye will imagine the speck to , be, the refractive index of glass being $\frac{3}{2}$.
5. A candle is placed in front of a concave spherical mirror, whose radius is one foot, at a distance of 5 inches from the mirror. Where will the image of the candle appear to be to an eye situated in the axis of the mirror?
6. If the candle in the last question be moved to a position two inches farther from the mirror, how will the position of the image be changed?
7. Show that if the velocity with which light travels in any medium were directly proportional to the refractive index of that medium, the time occupied by light, which is refracted directly at a plane surface, in reaching any point in the second medium would be the same as it would occupy in travelling all the distance from the geometrical focus after refraction, to the same point, in a medium of the same nature as the second medium.
'8. F ', Q are conjugate foci of a mirror whose centre is O and radius $O A$. Prove that if any point P be joined to the four points A, F, O, Q, and a straight line afoq be drawn to cut these lines in a, f, o, q, then f, q are conjugate foci of a mirror whose centre is o and radius oa.
8. If q be the geometrical focus of a pencil of light after reflection at a spherical surface, whose centre is C, corresponding to a luminous point at Q, and F be the principal focus, prove that $F C^{2}=F Q . F q$.
9. The locus of the image of a luminous point reflected in a plane mirror is a circle. Prove that the mirror always touches a conic section or passes through a fixed point.
10. A luminous point is placed in front of a plane reflecting surface. If this surface turn in any manner about a point in its own plane, prove that the geometrical focus of the rays after reflection lies on a sphere.

Prove that this will also be the case if the plane mirror move so as always to touch a prolate spheroid of which the luminous point is one focus.
12. A luminous point is placed in front of a refracting medium bounded by a transparent plane surface. Prove that if the bounding plane move in any manner about a fixed point in itself, the geometrical focus of the rays after refraction into the medium always lies on the surface of a sphere.
13. Three plane mirrors are all perpendicular to a given plane. Show that if a luminous point be placed anywhere on the circumference of the circle which is described round the triangle formed by the intersections of the mirrors with the given plane, the three images of the point formed by one reflection at each mirror respectively will all lie in a straight line.
14. Four plane mirrors are all perpendicular to a given plane. Find the position of a luminous point that its images formed by one reflection at each mirror respectively may all lie in a straight line.
15. A luminous point is placed within a polygon whose sides are reflecting surfaces: if the image of the point, formed by reflection at each side coincide with the point of intersection of the two adjacent sides, prove that the polygon is a regular hexagon, and the luminous point at its centre.
16. If a pencil of diverging rays incident on a convex spherical surface, is refracted to a point as far behind the surface as the origin of light is in front of it, show that the radius of the surface is $\frac{\mu-1}{\mu+1}$ of the distance of the point of light from the surface.
17. If any circle be drawn through two conjugate foci in the case of a spherical reflecting surface; prove that, in general, two other conjugate foci lie on the same circle.
18. A luminous point is placed within a reflecting sphere: prove that its distance from the centre is a harmonic mean between the distances, from the centre, of the geometrical foci after reflection at the opposite portions of the surface.
19. When the angie between a stick under water and its image is a maximum the stick makes an angle $\tan ^{-1} \sqrt{\mu}$ with the water and the sum of the angles which the stick and its image make with the water is $\frac{\pi}{2}$.
A. G. O.

CHAPTER III.

REFLECTION AND REFRACTION OF OBLIQUE PENCILS.

38. We have now discussed all the cases of direct incidence, and have ascertained that after direct refraction, or reflection, the form of a pencil of light, originally conical, is still approximately conical.

We shall find that this is not the case when a small pencil is obliquely incident; but that the rays of such a pencil, after refraction or reflection, all pass approximately through two straight lines, at right angles to each other and to the axis of the refracted or reflected pencil.
39. In the previous chapter we only considered those rays of the pencil which lie in one plane through its axis; but the pencil and the surface being originally symmetrical with respect to this axis, the geometrical foci of the rays in all such planes will be the same.

In fact, if with vertex Q and $Q A$ as axis, in any of the cases discussed in the last chapter, we describe a cone with semi-vertical angle $R Q A$, the rays of the original pencil which lie on this cone, after refraction or reflection, will all cut the line $A Q$ in the same point q.
40. Thus, let Q be the vertex and $Q A$ the axis of a pencil obliquely incident at A on a plane or spherical refracting or reflecting surface $B C D E$.

Let QO be that normal to this surface which passes through Q, which in the case of a spherical surface will be
the line joining Q with the centre of the sphere. Let $A O$ be the normal at A.

With vertex Q and axis $Q O$, and semi-vertical angle $A Q O$ describe a conical surface. This surface will cut the refracting or reflecting surface in a curve CAD; and by the remark of the last Article, all the rays in the pencil incident on CAD will pass through the same point of $Q O$ after refraction or reflection.

If with vertex Q and axis $Q O$, and semi-vertical angle slightly differing from $A Q O$, we describe a cone, this cone will cut the surface $B C D E$ in a curve $S R T$, and all the rays incident at points of this curve will, after reflection or refraction, pass through some one point in the line $Q O$.

If the lengths of $C D, B E$ be small compared with $A Q$ and $A O$, which is always the case in practice, the lines $C A D$, $S R T$ will be very nearly straight lines; and we may consider the set of rays which fall on the points of $C A D$, after refraction, to lie in a plane which passes through $C D$ and the point in $Q 0$ where they all meet.

Similarly, we may consider the set of rays which fall on $S R T$, after refraction or reflection, to lie in another plane, which passes through $S R T$ and the point in QO where all these rays meet.

$$
3-2
$$

These two planes are evidently each at right angles to

the plane $Q 0 A$, and will intersect in a straight line $s q_{1} t$, which is also perpendicular to the plane QOA.

If we suppose $S R T$ to approach indefinitely near to $C A D$, this line will assume some limiting position; and in this limiting position, if the pencil be small, it is a straight line through some point of which every ray of the refracted or reflected pencil will nearly pass.

This limiting position of the line is called the primary focal line; and the point q_{1}, where it cuts the plane QOA, is called the primary focus.

The plane $Q 0 A$ is called the primary plane, and the point where the primary focal line cuts the primary plane may be evidently considered as a focus, or point of concentration, of the refracted or reflected rays. which lie in the primary plane.
41. Again, if we consider the rays incident on $C A D$, these rays, after refraction or reflection, all pass through the point q_{2}, where the axis of the refracted or reflected pencil cuts the line QO. This point q_{2} may be considered as the focus of all rays in the section of the reflected or refracted pencil by the plane through $C A D$ and the axis of this pencil.

REFLECTION AND REFRACTION OF OBLIQUE PENCILS.

This point q_{2} is called the secondary focus, and the plane through CAD and $A q_{2}$ is sometimes called the secondary plane of the refracted or reflected pencil.

It will be pretty clear that if we take a section of the pencil by a plane through q_{2} parallel to the tangent plane to the refracting or reflecting surface at A, this section will be a sort of figure of eight, having no width at the point q_{2}, but swelling out above, because the rays have not come together to meet in Q0, and swelling out below, because the rays having passed through QO have again begun to diverge.

This figure of eight is nearly a straight line, the width of the loops being small, if the pencil is small. It is called the secondary focal line.
42. We see thus that in determining the form of a pencil after oblique refraction or reflection we have to determine two foci, and that the pencil is not approximately of a conical shape.

If we take a series of sections of the resulting pencil by planes parallel to the tangent plane to the refracting or reflecting surface at A, we see that the section at q_{1} is a straight line perpendicular to the primary plane, while that at q_{2} is a straight line in the primary plane. As the cutting plane passes from q_{1} to q_{2}, the section is of an oval shape, first, when near q_{1}, having its longest diameter perpendicular
to the primary plane ; and when near to q_{2}, having its greater length in the primary plane.

There must therefore be some position of the cutting plane between q_{1} and q_{2}, for which the diameters of the section in and perpendicular to the primary plane, are equal. In this position the section will be approximately circular, and it is called the circle of least confusion.

It is probably the nearest approach to a point of any section of the pencil, and is thus the point where any eye receiving the obliquely refracted or reflected pencil would consider the image of the original point of light to be placed.

Its position can be thus determined when those of the two foci are known.

Let the diameters of the surface $A B C D E$, in and perpendicular to the primary plane, be $2 \lambda_{1}$ and $2 \lambda_{2}$ respectively, that is, let $A D=\lambda_{2}, A B=\lambda_{1}$.

Also let $A q_{1}=v_{1}$ and $A q_{2}=v_{2}, q_{1}$ and q_{2} being the primary and secondary foci.

Let o be the point where the required section cuts $A q_{1} q_{2}$, and let $A o=x$.

Let of, og be the radii of the circle of least confusion, perpendicular to the primary plane, and in that plane respectively :
$\therefore o f=o g$ by definition of circle of least confusion.
Again, by similar triangles,

$$
\begin{gathered}
o f: A D:: o q_{2}: A q_{2} \\
\therefore \quad o f=\lambda_{2} \frac{v_{2}-x}{v_{2}}
\end{gathered}
$$

Similarly, $\quad o g: A B:: o q_{1}: A q_{1}$;
$\therefore \quad o g=\lambda_{1} \frac{x-v_{1}}{v_{1}}$.

But,

$$
\begin{gather*}
\quad o g=o f ; \\
\therefore \quad \lambda_{1} \frac{x-v_{1}}{v_{1}}=\lambda_{2} \frac{v_{2}-x}{v_{2}} ; \\
\therefore \quad\left(\frac{\lambda_{1}}{v_{1}}+\frac{\lambda_{2}}{v_{2}}\right) x=\lambda_{1}+\lambda_{2} ; \\
\therefore \quad \tag{1}\\
\frac{\lambda_{1}}{v_{1}}+\frac{\lambda_{2}}{v_{2}}=\frac{\lambda_{1}+\lambda_{2}}{x} \cdots \ldots . .
\end{gather*}
$$

The position of o is thus.determined if those of q_{1} and q_{2} are known.

If, as is usually the case, the surface $A B C D E$ has a circular boundary $\lambda_{1}=\lambda_{2}$, and the equation (1) becomes

$$
\begin{equation*}
\frac{1}{v_{1}}+\frac{1}{v_{2}}=\frac{2}{x} \tag{2}
\end{equation*}
$$

43. We have now to determine the position of the primary and secondary foci in the three cases of a pencil obliquely incident on a plane refracting surface and on a spherical refracting and reflecting surface respectively. A pencil obliquely incident on a plane reflecting surface is as we know reflected exactly from a point.
44. Let $Q A$ be the axis of a pencil incident at A on a plane refracting surface, $q_{2} A$ the direction of the refracted ray

produced backwards to meet a line $Q N$, drawn through Q perpendicular to the plane surface, in q_{2}-the secondary focus of the refracted pencil.

40 REFLECTION AND REFRACTION OF OBLIQUE PENCILS.

Let $Q R$ be any other ray of the pencil in the primary plane, and let the corresponding refracted ray produced backwards cut $A q_{2}$ in q_{1}. The limiting position of q_{1} when R approaches A is the primary focus of the refracted pencil.

Let

$$
A Q=u, \quad A q_{1}=v_{1}, \quad A q_{2}=v_{2},
$$

and let μ be the refractive index from the first medium into the second. Let the angle of incidence of $Q A$ be denoted by ϕ, and the corresponding angle of refraction be ϕ^{\prime}.

$$
\text { Then } \quad A Q N=\phi, \quad A q_{2} N=\phi^{\prime} \text {. }
$$

And by the law of refraction,

$$
\begin{align*}
\sin \phi & =\mu \sin \phi^{\prime} ; \\
\therefore \quad \frac{A N}{A Q} & =\mu \cdot \frac{A N}{A q_{2}} ; \\
\therefore \quad A q_{2} & =\mu \cdot A Q, \\
v_{2} & =\mu u \ldots \ldots . . \tag{1}
\end{align*}
$$

Again, let $\phi_{1}, \phi_{1}^{\prime}$ be the angles of incidence and refraction of the ray $Q R$;

$$
\begin{aligned}
& \therefore Q R A=90^{\circ}-\phi_{1}, q_{1} R A=90^{\circ}-\phi_{1}^{\prime} ; \\
& \therefore \quad \frac{A R}{A Q}=\frac{\sin A Q R}{\sin A R Q}=\frac{\sin \left(\phi_{1}-\phi\right)}{\cos \phi_{1}}, \\
& \frac{A R}{A q_{1}}=\frac{\sin A q_{1} R}{\sin A R q_{1}}=\frac{\sin \left(\phi_{1}^{\prime}-\phi^{\prime}\right)}{\cos \phi_{1}^{\prime}} ;
\end{aligned}
$$

$\therefore \frac{A q_{1}}{A Q}=\frac{\cos \phi_{1}^{\prime}}{\cos \phi_{1}} \cdot \frac{\sin \left(\phi_{1}-\phi\right)}{\sin \left(\phi_{1}^{\prime}-\phi^{\prime}\right)}$

$$
=\frac{\cos \phi_{1}^{\prime} \cdot \sin \frac{1}{2}\left(\phi_{1}-\phi\right) \cdot \cos \frac{1}{2}\left(\phi_{1}-\phi\right)}{\cos \phi_{1} \cdot \sin \frac{1}{2}\left(\phi_{1}^{\prime}-\phi^{\prime}\right) \cdot \cos \frac{1}{2}\left(\phi_{1}^{\prime}-\phi^{\prime}\right)} .
$$

Now

$$
\sin \phi=\mu \sin \phi^{\prime},
$$

$$
\sin \phi_{1}=\mu \sin \phi_{1}^{\prime} ;
$$

$$
\begin{gathered}
\therefore\left(\sin \phi_{1}-\sin \phi\right)=\mu\left(\sin \phi_{1}^{\prime}-\sin \phi^{\prime}\right) ; \\
\ldots \frac{\sin \frac{1}{2}\left(\phi_{1}-\phi\right)}{\sin \frac{1}{2}\left(\phi_{1}^{\prime}-\phi^{\prime}\right)}=\mu \cdot \frac{\cos \frac{1}{2}\left(\phi_{1}^{\prime}+\phi^{\prime}\right)}{\cos \frac{1}{2}\left(\phi_{1}+\phi\right)} ; \\
\therefore \frac{A q_{1}}{A Q}=\frac{\cos \phi_{1}^{\prime}}{\cos \phi_{1}} \cdot \frac{\mu \cdot \cos \frac{1}{2}\left(\phi_{1}^{\prime}+\phi^{\prime}\right)}{\cos \frac{1}{2}\left(\phi_{1}+\phi\right)} \cdot \frac{\cos \frac{1}{2}\left(\phi_{1}-\phi\right)}{\cos \frac{1}{2}\left(\phi_{1}^{\prime}-\phi^{\prime}\right)} .
\end{gathered}
$$

But in the limit when R comes up to A, we have $\phi_{1}=\phi$ and $\phi_{1}{ }^{\prime}=\phi^{\prime}$; and this formula becomes

$$
\begin{equation*}
v_{1}=\mu \cdot \frac{\cos ^{2} \phi^{\prime}}{\cos ^{2} \phi} \cdot u . \tag{2}
\end{equation*}
$$

45. Secondly, let $Q A$ be the axis of a pencil obliquely incident on a spherical reflecting surface. Let $A q_{2}$ the cor-

responding reflected ray cut $Q O$, the line joining Q with the centre of the sphere in q_{2}, which is the secondary focus.

Let $Q R$ be any other ray in the primary plane, and let $R q_{1}$ be the corresponding reflected ray, cutting $A q_{2}$ in a
point q_{1}. The limiting position of q_{1} when R is very near to A, will be the primary focus.

Let $\quad A Q=u, A q_{1}=v_{1}, A q_{2}=v_{2}, A O=r$.
Let $Q A O=\phi$ the angle of incidence of the axis;
$\therefore q_{2} A O=\phi$ the angle of reflection of the axis.
Let each of the angles $Q R O, q_{1} R O$ be called ϕ_{1}.
Then we have

$$
\begin{gather*}
\Delta Q A q_{2}=\Delta Q A O+\Delta q_{2} A O ; \\
\therefore \quad \frac{1}{2} u v_{2} \sin 2 \phi=\frac{1}{2} u r \sin \phi+\frac{1}{2} v_{2} r \sin \phi ; \\
\therefore 2 u v_{2} \cos \phi=u r+v_{2} r ; \\
\therefore \frac{2 \cos \phi}{r}=\frac{1}{v_{2}}+\frac{1}{u} \ldots \ldots \ldots \ldots \tag{1}
\end{gather*}
$$

Again,

$$
\begin{aligned}
& \angle A O q_{2}=\phi+\angle A Q O, \\
& \angle R O q_{2}=\phi_{i}+R Q O ; \\
\therefore & \angle A O R=\phi_{1}-\phi+\angle R Q A .
\end{aligned}
$$

Similarly,

$$
\begin{align*}
\angle R q_{1} A & =\phi_{1}-\phi+\angle R O A ; \\
\therefore 2 \angle R O A & =\angle R q_{1} A+\angle R Q A \tag{2}
\end{align*}
$$

But all the three angles $R 0 A, R q_{1} A, R Q A$, are ultimately very small, and their circular measures may be replaced by their sines. Also we may consider $R A$ as a portion of a straight line at right angles to $A O$.

Hence, from the triangle $R Q A$,

$$
\sin R Q A=\frac{R A}{R Q} \sin R A Q=\frac{R A}{u} \cdot \cos \phi,
$$

and from the triangle $R q_{1} A$,
and

$$
\begin{gathered}
\sin R q_{1} A=\frac{R A}{R q_{1}} \sin R A q_{1}=\frac{R A}{v_{1}} \cos \phi, \\
R O A=\frac{R A}{r}
\end{gathered}
$$

whence, substituting in the formula (2) we get dividing by $R A$,
or

$$
\begin{align*}
& \frac{2}{r}=\frac{\cos \phi}{u}+\frac{\cos \phi}{v_{1}} \\
& \frac{1}{v_{1}}+\frac{1}{u}=\frac{2}{r \cos \phi} \cdots \tag{3}
\end{align*}
$$

46. Thirdly, let $Q A$ be the axis of a pencil obliquely incident on a spherical refracting surface, $A S$ the correspond-

ing refracted ray, produced backwards if necessary to cut $Q O$ in q_{2}. Let $Q R$ be another ray in the primary plane and let the line of the corresponding refracted ray cut $q_{2} A$ in q_{1}.

The limiting position of q_{1} is the primary focus, and q_{2} is the secondary focus.

Let

$$
\begin{gathered}
Q A O=\phi, \quad q_{2} A O=\phi^{\prime}, \\
Q R O=\phi_{1}, \quad q_{1} R O=\phi_{1}^{\prime}, \\
A Q=u, \quad A q_{1}=v_{1}, \quad A q_{2}=v_{2}, \quad A O=r .
\end{gathered}
$$

Then, as in the last Article,

$$
\begin{aligned}
& R O A=R q_{1} A+\phi^{\prime}-\phi_{1}^{\prime} \\
& R O A=R Q A+\phi-\phi_{1}
\end{aligned}
$$

44 reflection and refraction of oblique pencilis. and as in the last Article,

$$
\begin{array}{r}
\angle R O A=\frac{A R}{r}, R q_{1} A=\frac{A R \cos \phi^{\prime}}{v_{1}}, R Q A=\frac{A R \cos \phi}{u} ; \\
\therefore \frac{A R}{r}-\frac{A R \cos \phi^{\prime}}{v_{1}}=\phi^{\prime}-\phi_{1}^{\prime} \ldots \ldots \ldots . .(1) . \\
\frac{A R}{r}-\frac{A R \cos \phi}{u}=\phi-\phi_{1} \ldots \ldots \ldots .(2) . \tag{2}
\end{array}
$$

Also, as in Art. 44,
whence

- $\sin \phi=\mu \sin \phi^{\prime}, \quad \sin \phi_{1}=\mu \sin \phi_{1}^{\prime}$,

$$
\frac{\sin \frac{1}{2}\left(\phi-\phi_{1}\right)}{\sin \frac{1}{2}\left(\phi^{\prime}-\phi_{1}^{\prime}\right)}=\mu \cdot \frac{\cos \frac{1}{2}\left(\phi^{\prime}+\phi_{1}^{\prime}\right)}{\cos \frac{1}{2}\left(\phi+\phi_{1}\right)},
$$

or since in the limit $\phi-\phi_{1}$ and $\phi^{\prime}-\phi_{1}^{\prime}$ are indefinitely small, replacing sines of small angles by their circular measures, ultimately,
or

$$
\frac{\phi-\phi_{1}}{\phi^{\prime}-\phi_{1}^{\prime}}=\frac{\mu \cos \phi^{\prime}}{\cos \phi},
$$

whence from (1) and (2),

$$
\begin{align*}
\mu \cos \phi^{\prime}\left(\frac{A R}{r}-\frac{A R \cos \phi^{\prime}}{v_{1}}\right) & =\cos \phi\left(\frac{A R}{r}-\frac{A R \cos \phi}{u}\right) ; \\
\frac{\mu \cos ^{2} \phi^{\prime}}{v_{1}}-\frac{\cos ^{2} \phi}{u} & =\frac{\mu \cos \phi^{\prime}-\cos \phi}{r} \ldots \ldots . .(3) . \tag{3}
\end{align*}
$$

Again, $\quad \Delta Q A q_{2}=\triangle Q A O-\Delta q_{2} A O$;
$\therefore \frac{1}{2} u v_{2} \sin \left(\phi-\phi^{\prime}\right)=\frac{1}{2} u r \sin \phi-\frac{1}{2} v_{2} r \sin \phi^{\prime} ;$
$\therefore \frac{\sin \phi \cdot \cos \phi^{\prime}-\cos \phi \sin \phi^{\prime}}{r}=\frac{\sin \phi}{v_{2}}-\frac{\sin \phi^{\prime}}{u} ;$
and substituting for $\sin \phi$ its value $\mu \sin \phi^{\prime}$ and dividing throughout by $\sin \phi^{\prime}$, we have

$$
\begin{equation*}
\frac{\mu \cos \phi^{\prime}-\cos \phi}{r}=\frac{\mu}{v_{2}}-\frac{1}{u} . \tag{4}
\end{equation*}
$$

47. We have now discussed to a certain order of approximation the alterations produced in a given small pencil of light by one refraction or one reflection, whether the incidence be oblique or direct. In the three succeeding chapters we have to examine to the same order of approximation the effect produced on such pencils by a number of such reflections or refractions in certain important cases.

The student may notice that the results of the last three Articles include the positions of the geometrical foci investigated in Chapter II. These latter may be obtained from the formulæ of this Chapter by giving to ϕ and ϕ^{\prime} the value zero.

It may be mentioned here that although, in accordance with the remark of Art. 42, the circle of least confusion is probably the position at which the eye sees an object by a pencil which has been obliquely refracted or reflected, it is sometimes convenient to assume the primary or secondary focus as the position of the image.

If the obliquity be small these points will all be close together, and it will not matter much which of them we take.

EXAMPLES. CHAPTER III.

1. A small pencil of parallel rays is incident at an angle of 60° on a spherical reflecting surface. Find the position of the focal lines.
2. A small pencil of parallel rays is incident on a spherical refracting surface at an angle of 60°, the refractive index being $\sqrt{ } 3$. Find the position of the focal lines.
3. In each of the last two examples find the position of the circle of least confusion on the supposition that the incident pencil is a right circular cylinder.
4. The refractive index of a medium being $\frac{4}{3}$, find the position of the primary focus of a pencil incident on a sphere formed of that medium, at an angle whose cosine is $\frac{\sqrt{ } 7}{3 \sqrt{3}}$.
5. A pencil is incident obliquely on a spherical refracting surface at an angle whose tangent is equal to the refractive index of the sphere. Find the position of the focal lines.
6. A small pencil diverges from one extremity of the diameter of a sphere whose interior surface reflects light, and is incident on the sphere, so that its axis after reflection passes through the other end of the same diameter. Find the position of the focal lines, and show that $v_{2}=3 v_{1}$.
7. Find the position of the point, from which light must diverge so that after refraction at a sphere whose refractive index is μ the primary and secondary foci may coincide.

Show that the point must be at a distance μr from the centre of the sphere.
8. A small pencil of parallel rays is incident on a concave spherical reflector at an angle of $\frac{\pi}{4}$. Find the position of the focal lines and the circle of least confusion, assuming (1) the border of the mirror to be circular; (2) to be elliptical with its diameters in the primary and secondary planes in the ratio of $\sqrt{ } 2$ to 1 .
9. If O be the origin of light, P the point of incidence of the axis, and if the perpendicular to $O P$ through O meet the tangent at P, at the foot of the perpendicular from the secondary focus on the same tangent; prove that the primary focus is at an infinite distance.
10. A pencil of parallel rays is incident obliquely on a convex refracting spherical surface. Find the position of the primary and secondary focal lines. If the angle of incidence be $\frac{\pi}{3}$ and the primary focus be on the surface of the sphere, show that the angle of refraction is the complement of the critical angle.
11. A small pencil diverges from a point in the surface of a spherical shell polished internally, and is twice reflected, show that if the normal at the first point of incidence pass through the final primary focus, the angle of incidence was $\frac{1}{2} \cos ^{-1} \frac{3}{4}$.

CHAPTER IV.

on reflections at two or more plane surfaces.
48. We have first to prove that if a ray be reflected successively at two plane mirrors so that its course through-

Fig. (1).

out lies in a plane at right angles to each of them, its deviation from its original direction after two reflections will be double of the angle between the mirrors.

Let a ray be incident on one plane mirror at Q in the direction $P Q$, and let it be reflected along $Q R$ so as to fall on a second mirror at R and be again reflected along $R S T$.

48 ON REFLECTIONS AT TWO OR MORE PLANE SURFACES.
Let $P Q$ or $P Q$ produced meet $R T$ in S; then in figure (1) QST, and in figure (2) UST is the angle between the

Fig. (2).

first direction of the ray of light and its last direction, that is, the deviation of the ray, and in either case this deviation is double of the angle $R O Q$ between the mirrors.

Let $Q N, R N$ be the normals to the mirrors at the points Q and R, meeting, produced if necessary, in $N ; Q N$ and $R N$ bisect the angles $P Q R$ and $S R Q$ respectively.

Then in figure (1)

$$
\begin{aligned}
\angle Q S T & =\angle S R Q+\angle S Q R \\
& =2 \angle N R Q+2 \angle N Q R \\
& =2\left(180^{\circ}-Q N R\right) \\
& =2 \angle R O Q .
\end{aligned}
$$

In figure (2)

$$
\begin{aligned}
\angle U S T & =\angle P S R \\
& =\angle P Q R-\angle Q R S \\
& =2 \angle M Q R-2 \angle Q R N \\
& =2 \angle Q N R \\
& =2 \angle Q O R .
\end{aligned}
$$

In either case the deviation is double the angle between the mirrors.

The property proved in this proposition is that on which the construction of the sextant depends. For a description of this instrument the reader is referred to any treatise on astronomy.
49. Again, let light emanate from a luminous point situated between two plane mirrors and after incidence on one of them be reflected so as to fall on the second, and then back again on to the first, and so on; the position and number of the images of the luminous point formed by successive reflections are determined by some very simple laws which we proceed to investigate.

Let the mirrors, in the first place, be parallel ; and let 0 be a luminous point somewhere between them. Draw $A O B$

through 0 perpendicular to the planes of the mirrors, and produce it indefinitely in both directions.

Take $A Q_{1}=A O, B Q_{2}=B Q_{1}, A Q_{3}=A Q_{2}$,
and so on. Then, by Art. 19, $Q_{1}, Q_{2} \ldots$ are the geometrical foci of a pencil of light originally proceeding from O and reflected, first, by the surface A, then by the surface B, and so on, that is, they are the positions of the successive images of O, as seen by an eye placed anywhere between the mirrors, obtained by successive reflections, beginning with the sur- ${ }^{-}$ face A.

Similarly, if $B P_{1}=O B, A P_{2}=A P_{1}, B P_{3}=B P_{2}$, and on ; $P_{1}, P_{2}, P_{3} \ldots$ are the positions of the successive images of O, obtained by reflection at B and A alternately, beginning with B.
A. G. O.

50 On Reflections at two or more plane surfaces.
Let now $O A=a, O B=b, A B=c, \therefore c=a+b$.
Then $O Q_{1}=2 a$,

$$
\begin{aligned}
& O Q_{2}=B Q_{2}+B O=B Q_{1}+B O=2 a+2 b=2 c \\
& O Q_{3}=A Q_{3}+A O=A Q_{2}+A O=2 c+2 a
\end{aligned}
$$

And in this manner

$$
\begin{aligned}
& O Q_{2 n}=2 n c \\
& O Q_{2 n+1}=2 n c+2 a
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& O P_{1}=2 b \\
& O P_{2}=2 c \\
& O P_{3}=2 c+2 b
\end{aligned}
$$

$$
\begin{aligned}
& O P_{2 n}=2 n c \\
& O P_{2 n+1}=2 n c+2 b
\end{aligned}
$$

These formulæ give the positions of the successive images.
It is evident that $Q_{1}, Q_{3} \ldots Q_{2 n+1}$ fall to the left of O, as also do $P_{2}, P_{4} \ldots P_{2 n}$; while $Q_{2}, Q_{4} \ldots Q_{2 n}$, as also $P_{1}, P_{3} \ldots P_{2 n+1}$, fall to the right of 0 .

It follows from these formulæ that

$$
Q_{1} P_{2}=Q_{3} P_{4}=\ldots=2 c-2 a=2 b=O P_{1},
$$

and similarly

$$
Q_{2} P_{s}=Q_{4} P_{5}=\ldots \ldots \ldots \ldots \ldots=2 b=O P_{1},
$$

while the lengths $P_{2} Q_{3}, P_{4} Q_{5} \ldots P_{1} Q_{2} \ldots$ are all equal to $O Q_{1}$.
If the point O be midway between the mirrors $a=b$, and the successive images will all be arranged along the line $A O B$, each image being at a distance c from the nearest one.
50. Let the luminous point O be placed between two mirrors inclined at any angle. The images formed by successive reflections will no longer be arranged in a straight line, but will, as we shall see, all lie on a circle.

The figure represents sections of the mirrors by a plane passing through the luminous point perpendicular to the planes of the mirrors.

O is the luminous point; A, B are the lines in which the plane of the paper cuts the planes of the mirrors. Let these lines, produced if necessary, meet in C.

Draw $O Q_{1}$ perpendicular to A and produce it to Q_{1} as far behind A as O is in front of A. Then Q_{1} is the image of O formed by reflection at A. Draw Q_{1}, Q_{2} perpendicular to B, and take Q_{2} a point as far behind B as Q_{1} is in front; Q_{2} is the image formed by light reflected first at A and then at B.

In a similar way the positions of the succeeding images can be found, some portion of the light which emanates from any image formed by one mirror being incident on the other mirror.

It is evident that if the position of any of the points $Q_{1}, Q_{2} \ldots$ lies within that angle between the mirrors which is vertically opposite to the angle $A C B$, the light which, being reflected at either mirror, appears to proceed from this image cannot fall on the other mirror; and no more images will be produced.

52 on reflections at two or more plane surfaces.

It is clear from the construction that $C Q_{1}=C O$, similarly that $C Q_{2}=C Q_{1}$, and so on. Thus all the points $Q_{1}, Q_{2} \ldots$ lie on a circle whose centre is C and radius $C O$.

The same will be true of the images formed by successive reflections, if the first image be formed by reflection at B.

Let the angle between the mirrors

$$
A C B=\gamma
$$

and let the angle $O C A=\alpha, \angle O C B=\beta$,

$$
\therefore \alpha+\beta=\gamma .
$$

Then
$\angle O C Q_{1}=2 x$,
$\angle O C Q_{2}=\angle O C B+\angle B C Q_{2}=\angle O C B+\angle B C Q_{1}=2 \alpha+2 \beta=2 \gamma$,
$\angle O C Q_{3}=\angle O C A+\angle A C Q_{3}=\angle O C A+\angle A C Q_{2}=2 \gamma+2 x$,
and so on we shall find that generally

$$
\begin{aligned}
& \angle O C Q_{2 n}=2 n \gamma, \\
& \angle O C Q_{2 n+1}=2 n \gamma+2 x .
\end{aligned}
$$

If $P_{1}, P_{2} \ldots$ be the images formed by successive reflections beginning with the mirror B, we should similarly arrive at results

$$
\angle O C P_{2 n}=2 n \gamma, \quad O C P_{2 n+1}=2 n \gamma+2 \beta .
$$

51. We can easily investigate the number of images which will exist for any given values of α, β and γ.

If the last image be an odd one, the point $Q_{2 n+1}$ must lie within the angle vertically opposite to $A C B$, therefore

$$
\begin{aligned}
& O C Q_{2 n+1}>\pi-\beta<\pi+\alpha, \\
\therefore \quad & 2 n \gamma+2 x>\pi-\beta<\pi+\alpha,
\end{aligned}
$$

or adding $\beta-\alpha$ to each side of these inequalities

$$
\begin{aligned}
& 2 n \gamma+\alpha+\beta>\pi-\alpha<\pi+\beta, \\
& 2 n \gamma+\gamma \quad>\pi-\alpha<\pi+\beta, \\
& \therefore 2 n+1>\frac{\pi-\alpha}{\gamma}<\frac{\pi+\beta}{\gamma} .
\end{aligned}
$$

That is $2 n+1$ is the integer that lies between $\frac{\pi-\alpha}{\gamma}$ and $\frac{\pi+\beta}{\gamma}$. The difference of these fractions being $\frac{\alpha+\beta}{\gamma}$ or unity, there is only one integer lying between them.

If the last image be an even one we must similarly have

$$
\begin{aligned}
& O C Q_{2 n}>\pi-\alpha<\pi+\beta \\
\therefore & 2 n \gamma>\pi-\alpha<\pi+\beta \\
\therefore & 2 n>\frac{\pi-\alpha}{\gamma}<\frac{\pi+\beta}{\gamma} .
\end{aligned}
$$

In either case the number of images that can be formed is given by the integer that lies between $\frac{\pi-\alpha}{\gamma}$ and $\frac{\pi+\beta}{\gamma}$.

Similarly the number of images that can be formed by reflection first at B can be investigated.
52. The Kaleidoscope furnishes a good illustration of these articles. In that toy two mirrors are inclined at an

angle $\frac{\pi}{3}$ to each other, and pieces of coloured glass placed

54 ON REFLECTIONS AT TWO OR MORE PLANE SURFACES.
between them at one end of a tube, at the other end of which is the eye.

Let $C A, C B$ be the mirrors. Produce $B C$ to F, and $A C$ to E, and draw $G C D$ so as to bisect the angles $A C F$ and $B C E$.

Then P_{1}, P_{2}, P_{8} will lie in the angles $B C D, G C F$ and $F C E$ respectively,
Q_{1}, Q_{2}, Q_{3} in the angles $A C G, D C E, E C F$ respectively.
Also P_{3} and Q_{3} will coincide; for by the formulæ of Article 50
$\angle O C Q_{3}$ measured from O in a direction opposite to that in which the hands of a watch move $=\frac{2 \pi}{3}+20 C A$, and $\angle O C P_{3}$ measured in the direction of the motion of the hands of a watch $=\frac{2 \pi}{3}+2 \angle O C B$.

And the sum of these angles

$$
\begin{aligned}
& =\frac{4 \pi}{3}+2 \angle O C A+2 \angle O C B \\
& =\frac{4 \pi}{3}+2 \angle A C B=\frac{4 \pi}{3}+\frac{2 \pi}{3}=2 \pi .
\end{aligned}
$$

Hence P_{3} and Q_{3} coincide.
Thus, if there be any arrangement of coloured glass in the compartment $A C B$, this will be represented over again in the five compartments $B C D, D C E, E C F, F C G, G C A$, and the eye will see a regular six-fold, or rather three-fold pattern, since the figures will be inverted in alternate compartments.
53. To trace the course of the pencil by which an eye placed in any position in the plane of the paper would see any one of the series of images, we must make the following construction.

First, join the image in question with the eye; this joining line obviously must be the direction of the light when
it enters the eye: secondly, join the point where this line cuts the mirror by which the image in question is formed, with the image next before it in order; this line is clearly the direction of the light before the last reflection.

Proceed in this way to determine the direction of the light before each reflection till we finally arrive back at the original source of light.

Thus, if E be the position of the eye, and Q_{3} the third image.

Join $E Q_{3}$ cutting the mirror A by which Q_{3} is formed in H. Join $H Q_{2}$ cutting the mirror B in K. Join $K Q_{1}$ cutting the mirror A in L. Join $L O$.

Then a ray of light proceeding from 0 along $O L$ will be reflected by A along $L K$, again reflected by B along $K H$, and finally reflected by A along $H E$ to the eye. These lines will thus indicate the directions of the axes of the oblique pencils by which Q_{3} is finally made visible to an eye at E.

The figure of this article assumes that the eye is in the same plane as the images. If this be not the case, the
successively reflected rays will not be all in one plane, but the figure may be taken to represent the orthogonal projection of the rays on a plane passing through the series of images perpendicular to the line of intersection of the planes of the mirrors. In virtue of Example 29 of Chapter I. all the reflected rays will be equally inclined to this last mentioned line.

EXAMPLES ON CHAPTER IV.

1. Find the angle between two mirrors that a ray reflected at each of them in succession may be moving in a direction at right angles to its first direction.
2. Show that when an eye is placed to view any image formed by successive reflections at two mirrors, the apparent distance of the image from the eye is equal to the distance actually travelled by the light in coming to the eye from the original point of light.
3. A luminous point is placed at the centre of an equilateral triangle whose side is a, show that the distance of the image formed by $2 n$ reflections at the sides of the triangle in succession from the luminous point is $n a$, and of that formed by $2 n+1$ reflections is $a \sqrt{n^{2}+n+\frac{1}{3}}$.
4. Find the number of images formed when a bright point is placed between two mirrors inclined at an angle of 50°. Where must the bright point be placed that there may be seven images?
5. A luminous point moves about between two plane mirrors, which are inclined at an angle of 27°. Prove that at any moment the number of images of the point is 13 or 14 according as the point's angular distance from the nearer mirror is less or not less than 9°.
6. Find the number of images formed when the angle between the mirrors is 80°. Find the positions of the point for which there are five images.
7. Two luminous points are placed between two parallel mirrors, on a common perpendicular to their planes: the points are at equal distances from the two mirrors respectively. The distance between the mirrors being a, and between the luminous points c, prove that the distances of the images from each other will be alternately c and $a-c$.
8. A plane and a concave mirror are placed opposite one another on the same axis at a distance apart greater than the radius of the mirror; a person standing with his back to the plane mirror, but close to it, observes the three images of the candle he holds in his hand which are formed by fewest reflections of all that are visible to him. He moves the candle forward till it coincides with the nearest image: prove that the other two images will coincide also at the same time.

Prove also that if the person moves the candle further forward a distance x till it coincides with another image, at the instant of coincidence the first image will disappear, and if a be the distance between the mirrors, prove that the radius of the concave mirror is

$$
\frac{x+a \pm \sqrt{(x+a)^{2}-8 a x}}{2}
$$

9. P is a point within the acute angle $A O B$ formed by two mirrors, and a ray $P Q R$ emanating from P is reflected at $O A, O B$ in succession, and returns to P : show that the length of its path is $20 P \sin A O B$, and that $O P$ bisects the angle $Q P R$.
10. Two small arcs of a circle at the extremities of a diameter are polished and a luminous point is placed in the diameter at a distance u from the centre. Show that the distance v of the geometrical focus from the centre after m reflections is given by the equation

$$
\frac{1}{v}=(-1)^{m}\left\{\frac{1}{u} \mp \frac{2 m}{r}\right\},
$$

the upper or lower sign being taken according as the first reflection takes place at.the nearer or further arc.
11. Two reflecting paraboloids of revolution are placed with their axes coincident and their concavities turned in opposite directions. Show that the length of the path of a ray of light in going from any focus and returning to it again is constant. Also find the condition that the ray may retrace its course, and show that if one ray does so, all the rays will.
12. A ray of light proceeding from a point in the axis of a right cone is incident on the inside of the cone which is polished. After a second reflection the ray retraces its path; shew that the length of its path is $2 h \sin 3 \alpha ; h$ being the distance of the origin of light from the vertex, and α the semi-vertical angle of the cone.
13. A luminous point is situated at the centre of the base of a hollow but perfectly reflecting vertical cylinder of very small radius, and a horizontal screen is held over the cylinder at a height above its upper end which is half as great again as the height of the cylinder. Prove that a series of alternately darker and brighter rings is formed on the screen, the breadths of which are equal to the radius and diameter of the cylinder respectively.
14. An eye looks along the axis of a glass cylinder at the other end of which is a black speck. Prove that the eye will see a number of dark concentric rings, whose centre is the axis of the cylinder; and the number of which is the greatest integer in $\frac{h}{a \sqrt{\mu^{2}-1}}$, where h is the height, a the diameter of the base of the cylinder, and μ the refractive index.
15. A convex and a concave mirror have the same curvature and a common axis. The centre of the concave mirror is on the surface of the other. A beam of parallel rays directly incident on the convex mirror is alternately reflected from it and the concave mirror. Obtain expressions for the distances of the geometrical foci of the $(2 r-1)$ th and $2 r$ th reflected pencils from the vertex of the convex mirror and show that they tend to coincidence.

CHAPTER V.

ON REFRACTION THROUGH PRISMS AND PLATES.

54. The method of determining the course of a single ray of light while passing through a series of media bounded by parallel planes has been fully enough indicated in Articles 14 and 15 ; we need not therefore consider it farther, but proceed to the determination of the course of a ray of light in passing through a portion of a medium bounded by planes not parallel.
55. A portion of a medium of which two of the boundaries are planes inclined to one another at any angle, is called a prism.

The line of intersection of these planes is called the edge of the prism.

The planes themselves are called the faces of the prism.
The angle between the planes is called the angle of the prism, or sometimes the refracting angle of the prism.
56. When a ray of light passes from one medium to another, the angle between its direction in the first medium and its direction in the second medium is called the deviation of the ray.

If a ray of light pass from one medium into another, and ϕ, ϕ^{\prime} be the angles of incidence and refraction respectively, and μ be the index of refraction between the media, we have

$$
\sin \phi=\mu \sin \phi^{\prime}
$$

From this equation it is evident that as ϕ increases so also does ϕ^{\prime}, and vice versâ.

It can farther be proved that as the angle of incidence increases, the deviation increases also.

For .

$$
\begin{aligned}
& \sin \phi=\mu \sin \phi^{\prime}, \\
\therefore & \frac{\sin \phi \sim \sin \phi^{\prime}}{\sin \phi+\sin \phi^{\prime}}=\frac{\mu \sim 1}{\mu+1}, \\
\therefore \tan & \frac{\phi \sim \phi^{\prime}}{2}=\frac{\mu \sim 1}{\mu+1} \tan \frac{\phi+\phi^{\prime}}{2} .
\end{aligned}
$$

But as ϕ increases, so does ϕ^{\prime}, and therefore $\frac{\phi+\phi^{\prime}}{2}$; whence $\frac{\phi \sim \phi^{\prime}}{2}$ increases with ϕ.

But $\phi \sim \phi^{\prime}$ is evidently the deviation. Hence when a ray of light passes from one medium to another, the deviation increases as the angle of incidence increases.

This proposition can also be proved geometrically.
Let $A B$ be any straight line produced to C.

At A make the angle $B A P=\phi^{\prime}$, and at B make the angle $C B P=\phi ; B P$ and $A P$ will meet in some point P, since ϕ and ϕ^{\prime} are unequal.

The angle $B P A$ is $\phi-\phi^{\prime}$, that is, the deviation corresponding to the value $C B P$ of ϕ.

Now

$$
\sin \phi=\mu \sin \phi^{\prime} .
$$

But

$$
\frac{\sin \phi}{\sin \phi^{\prime}}=\frac{\sin C B P}{\sin C A P}=\frac{A P}{B P}
$$

Hence $A P=\mu . B P$.

Find a point E^{\prime} between A and B, such that $A E=\mu . B E$, and another point F beyond $A B$, such that $A F=\mu . B F$.

Then (Euclid, Book vı., Props. 3 and A) EP bisects the interior angle $A P B$ of the triangle $A P B$, and $F P$ bisects the exterior angle at P of the same triangle. Hence $E P F$ is a right angle, and the point P must therefore lie on a circle described on $E F$ as diameter.

Take any point Q on this circle, nearer to F than P. Then the angle $A Q B$ will be the deviation corresponding to the value $Q B F$ of ϕ. But if we describe a segment of a circle through A, B and P, and another through A, B and Q, it is clear that above $A B$ the latter segment must lie entirely outside the former, and the angle in it will be less. Hence the angle $A Q B$ is less than the angle $A P B$, that is, the deviation increases with ϕ.
57. When a ray of light passes through a prism of denser material than the surrounding medium, in a plane Fig. (1).

perpendicular to the edge of the prism, the deviation on the whole is from the edge.

Let the plane in which the light passes be the plane of the paper. Let A be the point in which the edge of the prism meets the plane of the paper, and $P Q R S$ be the course of the ray of light.

We have three cases.
(1) When the normals at Q and R meet within the prism, as in fig. (1). In this case, since in passing into a
denser medium light is bent nearer to the normal, the deviation at Q is evidently away from the edge, and likewise that at R. Hence, on the whole, the deviation is from the edge.
(2) Let the normals to the faces at Q and R meet without the prism as in fig. (2).

Fig. (2).

The deviation at Q is towards the edge, that at R is from it.

The angle $Q R O$ is greater than the angle $R Q N$. Hence, by Article 56 , the deviation at R is greater than that at Q.

Hence, on the whole, the deviation is from the edge.
The same is the case, if the ray proceeds in the direction $S R Q P$, instead of $P Q R S$.
(3) Let the normals at Q and R meet on one face of the prism, as at R in fig. (3).

Fig. (3).

Then the ray is itself the normal at the point where it meets one face of the prism, and therefore at that point suffers no deviation. At the point where it meets the other face, its deviation is from the edge. Hence, on the whole, the deviation is from the edge.
58. It is usual to call the angle of incidence of the ray on the first face ϕ, the corresponding angle of refraction ϕ^{\prime}, the angle of incidence within the prism on the second face ψ^{\prime}, and the angle which the emergent ray makes with the normal to the second face ψ. We then obviously have, if μ be the refractive index between the external medium and the prism,

$$
\begin{aligned}
& \sin \phi=\mu \sin \phi^{\prime} \\
& \sin \psi=\mu \sin \psi^{\prime}
\end{aligned}
$$

59. It is usual and convenient to consider ϕ and ψ positive, if they are measured on the side of the normals to the respective faces away from the edge, and negative, if measured on the side of the normal towards the edge, ϕ^{\prime} and ψ^{\prime} are then considered to have the same signs as ϕ and ψ respectively.

With this convention we can shew that the algebraic sum of the angles which the ray inside the prism makes with the normals to the two faces is equal to the angle of the prism.

Referring to the figures in Article 57, we see that in figure (1),

$$
\begin{aligned}
\phi^{\prime} & =N Q R, \psi^{\prime}=N R Q, \\
\therefore \phi^{\prime}+\psi^{\prime} & =N Q R+N R Q \\
& =180^{\circ}-R N Q \\
& =R A Q .
\end{aligned}
$$

In fig. (2) ϕ is measured towards the vertex, and ϕ and ϕ^{\prime} are consequently negative;

$$
\begin{aligned}
\therefore-\phi^{\prime} & =R Q N, \\
\psi^{\prime} & =Q R O,
\end{aligned}
$$

$$
\therefore \phi^{\prime}+\psi^{\prime}=Q R O-R Q N=R N Q=R A Q \text {, }
$$

since a circle will go through the four points A, R, Q, N.
In fig. (3) $\quad \phi^{\prime}=0$,

$$
\begin{aligned}
\psi^{\prime} & =N R Q=90^{\circ}-Q R A=R A Q, \\
\therefore \phi^{\prime}+\psi^{\prime} & =R A Q .
\end{aligned}
$$

The angle of the prism may be denoted by i; we have therefore always, with the above convention as to signs,

$$
\phi^{\prime}+\psi^{\prime}=i .
$$

60. We can now give a simple expression for the deviation of a ray in passing through a prism.

The deviation of the ray at the first surface is evidently $\phi-\phi^{\prime}$, from the edge if ϕ is measured from the edge, and towards the edge if ϕ is measured towards the edge.

If we agree to consider a deviation from the edge as positive, and to retain the convention of the last Article as to the sign of ϕ, the deviation at the first surface will be algebraically

$$
\phi-\phi^{\prime} .
$$

Similarly the deviation at the second refraction will be algebraically

$$
\psi-\psi^{\prime} .
$$

Hence the whole deviation will be

$$
\begin{gathered}
\phi-\phi^{\prime}+\psi-\psi^{\prime} \\
=\phi+\psi-i,
\end{gathered}
$$

by the last Article.
If the ray is incident at a small angle on a prism of small angle, so that i and ϕ are small, it follows that ϕ^{\prime} is small, and therefore ψ^{\prime}, and therefore ψ.

Hence, since the sines of small angles are very nearly equal to their circular measures, we have approximately

$$
\begin{gathered}
\phi=\mu \phi^{\prime}, \quad \psi=\mu \psi^{\prime}, \\
\therefore D=\phi+\psi-i=\mu\left(\phi^{\prime}+\psi^{\prime}\right)-i \\
=\mu i-i=(\mu-1) i .
\end{gathered}
$$

61. The deviation of a ray in passing through the prism depends on ϕ and ψ. These quantities are connected by the relations

$$
\begin{aligned}
& \sin \phi=\mu \sin \phi^{\prime} \\
& \sin \psi=\mu \sin \psi^{\prime}
\end{aligned}
$$

where ϕ^{\prime} and ψ^{\prime} are connected by the relation

$$
\phi^{\prime}+\psi^{\prime}=i .
$$

We may thus consider D really to be a function of ϕ, for its value will be given for any given value of ϕ, and will change if ϕ be changed. There is one value of ϕ for which the deviation D has a less value than for any other value, and this minimum value of the deviation we proceed to investigate.
62. We know, from Art. 56, that the deviation of a ray in passing from one medium into another increases as the angle of incidence increases.

Let now $\phi^{\prime}-\alpha, \phi^{\prime}, \phi^{\prime}+\alpha$ be three angles of refraction corresponding to values $\phi_{1}, \phi_{2}, \phi_{5}$ of the angle of incidence,

$$
\begin{aligned}
\therefore \quad \sin \phi_{1} & =\mu \sin \left(\phi^{\prime}-\alpha\right), \\
& \sin \phi_{2}=\mu \sin \phi^{\prime}, \\
& \sin \phi_{3}=\mu \sin \left(\phi^{\prime}+\alpha\right),
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \sin \phi_{1}+\sin \phi_{3}=\mu \sin \left(\phi^{\prime}+\alpha\right)+\mu \sin \left(\phi^{\prime}-\alpha\right), \\
& \begin{aligned}
\therefore 2 \sin \frac{\phi_{1}+\phi_{3}}{2} \cos \frac{\phi_{3}-\phi_{1}}{2} & =2 \mu \sin \phi^{\prime} \cos \alpha, \\
& =2 \sin \phi_{2} \cos \alpha \ldots \ldots \ldots \text { (1). }
\end{aligned}
\end{aligned}
$$

Now by Art. 56,

$$
\begin{aligned}
& \phi_{3}-\left(\phi^{\prime}+\alpha\right)>\phi_{1}-\left(\phi^{\prime}-\alpha\right), \\
& \therefore \phi_{3}-\phi_{1}>2 \alpha, \\
& \therefore \cos \frac{\phi_{3}-\phi_{1}}{2}<\cos \alpha, \\
& \therefore \sin \frac{\phi_{1}+\phi_{3}}{2}>\sin \phi_{2} \ldots . . \text { by }(1),
\end{aligned}
$$

A. G. o.

$$
\begin{gathered}
\therefore \phi_{1}+\phi_{3}>2 \phi_{2}, \\
\therefore \phi_{3}-\phi_{2}>\phi_{2}-\phi_{1}, \\
\therefore\left\{\phi_{3}-\left(\phi^{\prime}+\alpha\right)\right\}-\left(\phi_{2}-\phi^{\prime}\right)>\left(\phi_{2}-\phi^{\prime}\right)-\left\{\phi_{1}-\left(\phi^{\prime}-\alpha\right)\right\} .
\end{gathered}
$$

That is, when the angle of refraction increases from ϕ^{\prime} to $\phi^{\prime}+\alpha$, the deviation is more increased than when the angle of refraction increases from $\phi^{\prime}-\alpha$ to ϕ^{\prime}.

Now let a ray pass through a prism whose refracting angle is i so that $\phi=\psi$; therefore also $\phi^{\prime}=\psi^{\prime}=\frac{i}{2}$.

Let ϕ be increased, so that ϕ^{\prime} is increased and becomes $\frac{i}{2}+\alpha$. It follows that ψ^{\prime} becomes $\frac{i}{2}-\alpha$.

Hence the deviation is increased at the first surface and diminished at the second, but is more increased at the first than it is diminished at the second. Hence on the whole the deviation is increased.

Similarly if ϕ be diminished, so that ϕ^{\prime} becomes $\frac{i}{2}-\alpha$, and ψ^{\prime} consequently becomes $\frac{i}{2}+\alpha$, the deviation is more increased at the second surface than it is diminished at the first.

Hence the least deviation is obtained when $\phi=\psi$, and consequently $\phi^{\prime}=\psi^{\prime}=\frac{i}{2}$.

If D_{1} be the deviation in this case, we have

$$
\begin{gathered}
D_{1}=2 \phi-i, \\
\therefore \phi=\frac{D_{1}+i}{2} \text { and } \phi^{\prime}=\frac{i}{2}, \\
\therefore \sin \frac{D_{1}+i}{2}=\mu \sin \frac{i}{2},
\end{gathered}
$$

which determines D_{1}.
63. Having discussed the effects of refraction through a plate or a prism on a single ray, we have now to consider the modifications produced by such refractions in a pencil.

We consider, first, the case of a pencil directly incident on a portion of a medium bounded by two parallel planes. Such a portion is frequently called a plate.

Let Q be the origin of the pencil of light, $Q A$ the axis of the pencil, which will be also the normal to the first surface

at A, and to the second surface at B, since the pencil is directly incident.

Let q be the geometrical focus of the pencil after the first refraction into the medium, μ the index of refraction from the external space into this medium.

Then, by Art. 24, $A q=\mu . A Q$.
The pencil after the first refraction may be supposed to be a cone diverging from q, and incident on the external medium. The index of refraction from the plate into this external medium will, by Article 14, be $\frac{1}{\mu}$.

Hence, if F be the geometrical focus after refraction into the external medium again, we have

$$
B F=\frac{1}{\mu} \cdot B q
$$

Let

$$
\begin{gathered}
A Q=u, \quad A B=t, \quad A F=v . \\
\therefore B q=A q+t .
\end{gathered}
$$

Thus $\quad B F=\frac{1}{\mu}(A q+t)=\frac{1}{\mu}(\mu \cdot A Q+t)$

$$
=A Q+\frac{t}{\mu} .
$$

And
or

$$
\begin{aligned}
A F & =A Q+\frac{t}{\mu}-t \\
& =A Q-t \cdot \frac{\mu-1}{\mu}, \\
v= & u-t \cdot \frac{\mu-1}{\mu} .
\end{aligned}
$$

Hence to an eye on the left of B, the image of the point of light at Q appears nearer than Q by a distance $t . \frac{\mu-1}{\mu}$.
64. Secondly, let a pencil be obliquely incident on a plate, and pass through it.

In this case, after the first refraction, the pencil does not approximately diverge from a point; and we must separately consider the effect of the refraction on those rays of the pencil which lie in the primary and secondary planes (Arts. 40, 41).

Let $Q A$ be the axis of the pencil incident on the plate at A at an angle $\phi, A B$ the direction of the axis of the pencil

when refracted into the plate making an angle ϕ^{\prime} with the normal at A, and $B C$ its direction when finally emergent; $B C$ is evidently parallel to $Q A$.

Let q_{1}, q_{2} be the primary and secondary foci of the pencil after the first refraction.

Then, by Art. 44, if $A Q$ be u, and μ be the index of refraction into the plate,

$$
\begin{aligned}
& A q_{2}=\mu \cdot u \\
& A q_{1}=\mu \cdot \frac{\cos ^{2} \phi^{\prime}}{\cos ^{2} \phi} \cdot u
\end{aligned}
$$

After this refraction we may consider those rays which lie in the primary plane to diverge from q_{1}, and be incident on the second surface of the plate at an angle ϕ^{\prime}, the refractive index being $\frac{1}{\mu}$.

If Q_{1} be the focus of the rays in this primary plane after the second refraction, we have again

$$
\begin{aligned}
B Q_{1} & =\frac{1}{\mu} \cdot \frac{\cos ^{2} \phi}{\cos ^{2} \phi^{\prime}} \cdot B q_{2} \\
& =\frac{1}{\mu} \cdot \frac{\cos ^{2} \phi}{\cos ^{2} \phi^{\prime}}\left(B A+\mu \cdot \frac{\cos ^{2} \phi^{\prime}}{\cos ^{2} \phi} u\right)
\end{aligned}
$$

But if t be the thickness of the plate,
whence

$$
\begin{align*}
& A B=\frac{t}{\cos \phi^{\prime}} \\
& B Q_{1}=\frac{t}{\mu} \cdot \frac{\cos ^{2} \phi}{\cos ^{3} \phi^{\prime}}+u \tag{1}
\end{align*}
$$

Again, after the first refraction, we may consider the rays which lie in the secondary plane, to diverge from q_{2} and fall on the second surface, and be there refracted again, the refractive index being $\frac{1}{\mu}$.

Hence we have, if Q_{2} be the focus of the rays in the secondary plane after this refraction,

$$
\begin{aligned}
B Q_{2} & =\frac{1}{\mu} \cdot B q_{2} \\
& =\frac{1}{\mu}\left(A B+A q_{2}\right) \\
& =\frac{t}{\mu \cos \phi^{\prime}}+u .
\end{aligned}
$$

Those rays of the emergent pencil which lie in the primary plane, approximately diverge from a point Q_{1}; and the rays in its secondary plane approximately diverge from a point Q_{2}.

It is easy to see that the general form of such a pencil must nearly be the same as that of a pencil after one oblique refraction, as described in Art. 42, and that there will be a circle of least confusion determined, as in that Article, from the positions of Q_{1} and Q_{2}.
65. We have finally to determine the form of a pencil after oblique refraction through a prism.

Let $Q A$ be the axis of such a pencil, incident on the first face of a prism, refracted along $A B$, and finally emergent along $B C$.

Let $\phi, \psi, \phi^{\prime}, \psi^{\prime}$ have the meanings assigned to them in Article 58.

Also let q_{1}, q_{2} be the foci of the rays in the primary and secondary planes respectively after the first refraction, Q_{1}, Q_{2} the corresponding foci after the second refraction.

Let $A B=c, A Q=u$.
Then, by Art. 44, for the first refraction, we have

$$
\begin{aligned}
& A q_{1}=\mu \cdot \frac{\cos ^{2} \phi^{\prime}}{\cos ^{2} \phi} \cdot u, \\
& A q_{2}=\mu u .
\end{aligned}
$$

And from the second refraction, remembering that the index of refraction is $\frac{1}{\mu}$, we have

$$
\begin{gathered}
B Q_{1}=\frac{1}{\mu} \cdot \frac{\cos ^{2} \psi}{\cos ^{2} \psi^{\prime}} \cdot B q_{1}, \\
B Q_{2}=\frac{1}{\mu} \cdot B q_{2}, \\
\therefore B Q_{1}=u \cdot \frac{\cos ^{2} \psi \cdot \cos ^{2} \phi^{\prime}}{\cos ^{2} \psi^{\prime} \cdot \cos ^{2} \phi}+\frac{c}{\mu} \cdot \frac{\cos ^{2} \psi}{\cos ^{2} \psi^{\prime}}, \\
B Q_{2}=u+\frac{c}{\mu} .
\end{gathered}
$$

It is usual to consider the axis of the pencil to pass so near to the edge of the prism, or else the size of the prism to be so small, that $A B$ may be neglected in comparison with the other distances. This will generally be a tolerably accurate supposition in practical work. We then get

$$
\begin{aligned}
& B Q_{1}=u \cdot \frac{\cos ^{2} \psi \cdot \cos ^{2} \phi^{\prime}}{\cos ^{\psi} \psi^{\prime} \cdot \cos ^{2} \phi}, \\
& B Q_{2}=u .
\end{aligned}
$$

These equations give the foci of the rays in the primary and secondary planes of the emergent pencil respectively. The circle of least confusion can be deduced, as in Art. 42, in accordance with the remark at the end of Art. 64.

If the axis of the pencil be incident so as to pass through the prism with minimum deviation,

$$
\phi=\psi \text { and } \phi^{\prime}=\psi^{\prime},
$$

we then get

$$
B Q_{1}=u, \quad B Q_{2}=u,
$$

that is, the rays in the primary and the secondary planes diverge approximately from the same point. Thus the whole pencil may be considered in this case approximately to diverge from one point at a distance from the edge of the prism equal to that of the original point of light.

EXAMPLES ON CHAPTER V.

1. Show that if the angle of a prism be greater than twice the critical angle for the medium of which it is composed, no ray can pass through.
2. A ray of light is incident upon one face of a prism, in a direction perpendicular to the opposite face. Show that, i the angle of the prism being less than 90°, the ray will emerge at the opposite face if $\cot i>\cot \alpha-1$, where α is the critical angle for the medium of which the prism is composed.
3. If a ray be incident nearly parallel to the first surface of a prism and emerge at right angles to that surface; prove that cot $i+1=\sqrt{\mu^{2}-1}, i$ being the angle of the prism, and μ the refractive index.
4. Rays are incident at a given point of a prism so as to be refracted in a plane perpendicular to its edge. If i be the angle of the prism and α the critical angle, show that the angular space within which rays may be incident so as to pass through the prism is $\cos ^{-1}\left\{\frac{\sin (i-\alpha)}{\sin \alpha}\right\}$.
5. If the angle of a prism be 60° and the refractive index $\sqrt{ } 2$, show that the minimum deviation is 30°.
6. The angle of a prism is 60° and the refractive index $\frac{3}{2}$. Show that the minimum deviation of a ray of light passing through it is nearly $37^{\circ} 10^{\prime}$; having given that $\sin 48^{\circ} 35^{\prime}=\cdot 75$ nearly.
7. If D be the minimum deviation for a prism, whose refractive index is μ and angle i, prove that

$$
\cot \frac{i}{2}+\cot \frac{D}{2}=\mu \operatorname{cosec} \frac{D}{2} .
$$

8. If D_{1} be the minimum deviation for a prism of angle i, and D_{2} that for a prism of the same material of angle $2 i$, prove that

$$
2 \cos \left(i+\frac{D_{1}+D_{2}}{4}\right) \cdot \sin \frac{D_{2}-D_{1}}{4}=\sin \frac{D_{1}}{2} .
$$

9. A ray passes through n equal prisms, in each case with minimum deviation. If its final direction is parallel to its direction at incidence, and it be moving towards the same part, prove that with the usual notation

$$
\tan \phi=\frac{\mu \sin \frac{\pi}{n}}{\mu \cos \frac{\pi}{n}-1}, i=2 \tan ^{-1} \frac{\sin \frac{\pi}{n}}{\mu-\cos \frac{\pi}{n}}
$$

10: If the angle of a prism be 60°, and the refractive index $\sqrt{\frac{7}{3}}$, find the limits between which ϕ must lie that the ray may be able to ewerge at the second face.
11. If ϕ be the angle of incidence on a prism, ψ that of emergence, i the refracting angle of the prism, and μ the refractive index, prove that

$$
\mu^{2} \sin ^{2} i=(\sin \psi+\cos i \sin \phi)^{2}+\sin ^{2} i \cdot \sin ^{2} \phi .
$$

12. A small pencil of rays is refracted through a prism in a principal plane. Show that if the emergent pencil diverge from a point,

$$
u=\frac{c}{\mu} \cdot \frac{\tan ^{2} \psi}{\tan ^{2} \phi-\tan ^{2} \psi}
$$

u, ϕ, ψ, c having the meanings given to them in Art. 65.
13. The minimum deviation for a prism is 90°. Show that the least value possible for the refractive index is $\sqrt{ }$ 2.
14. If the minimum deviation for rays incident on a prism be α, the refractive index cannot be less than $\sec \frac{\alpha}{2}$, and the angle of the prism cannot be greater than $\pi-\alpha$.
15. Two parallel rays are incident on one face of an isosceles prism at an angle ϕ, and emerge at right angles, one of them having been reflected at the base. If i be the angle of the prism, and μ its refractive index, prove that

$$
\sin 2 \phi=\left(1-\mu^{2} \sin ^{2} i\right) \sec i .
$$

16. Show that when a prism of glass of small refracting angle is immersed in water, the deviation of a ray passing through it is only one-fourth of what it is in air.
17. Show that when a ray of light enters a medium whose refractive index is $\sqrt{ } 2$, its greatest deviation is 45°.
18. A small pencil of light is obliquely refracted through a plate of thickness t. The angle of incidence being $\tan ^{-1} \mu$, show that the distance between the secondary focus after emergence, and the original point of light is $\frac{\mu^{2}-1}{\mu^{2}}$.t.
19. The angles at the base of a triangular prism are $\theta-\phi$ and 2θ, where $\sin \theta=\mu \sin \phi$; a ray of light falls on the shorter side of the triangle, the angle of incidence being θ on the side of the normal next the vertex : show that the ray after reflection from the base and the other side will emerge from the base in a direction parallel to its original direction; and that unless $\sin ^{2} \theta$ is greater than $\sin \phi$, the second reflection will not be total.
20. A ray of light is refracted through a sphere of glass in such a manner that it passes through the extremities of two radii at right angles to each other. If ϕ be the angle of incidence, and D the deviation, prove that

$$
\sin (2 \phi-D) \cdot \sin D=\mu^{2}-1
$$

21. If n equal and uniform prisms be placed on their ends with their edges outwards, find the angle of each prism that a ray refracted through each of them in a plane perpendicular to their edges may describe a regular polygon. Show that the distance of the point of incidence of such a ray on each prism from the edge of the prism bears to the distance of each edge from the common centre the ratio of

$$
\sqrt{ }\left(\mu^{2}-2 \mu \cos \frac{\pi}{n}+1\right) \text { to } \mu+1
$$

22. Prove that in prisms of the same material, as the refracting angle increases the minimum deviation also increases.
23. Without knowing the angles of a triangular prism, show that its refractive index can be determined by observing the minimum deviations of rays passing in the neighbourhood
of the three angles; and if these deviations be denoted by $2 x, 2 \beta, 2 \gamma$, then μ is given by

$$
\begin{aligned}
& \mu^{3}-\mu^{2}(\cos \alpha+\cos \beta+\cos \gamma)+\mu\{\cos (\beta+\gamma)+\cos (\gamma+\alpha) \\
& +\cos (\alpha+\beta)\}-\cos (\alpha+\beta+\gamma)=0 .
\end{aligned}
$$

24. Two prisms whose refracting angles are right angles and refractive indices μ, μ^{\prime}, are placed so that one face of each is in contact: their edges are parallel and their refracting angles opposed. Prove that the minimum deviation of the compound prism is $\sin ^{-1}\left(\mu^{2}-\mu^{\prime 2}\right)$.

„CHAPTER VI.

ON REFRACTION THROUGH LENSES.

66. A PORTION of a transparent medium bounded by surfaces, two of which are surfaces of revolution with a common axis, is called a lens.

In all cases that we shall have to consider, these surfaces of revolution are spheres, and the portion of the medium is symmetrical with respect to the line joining the centres of the spheres, being either entirely bounded by the surfaces of the spheres, or by them and a cylindrical surface, whose axis is the line joining the centres of the spheres.

The spherical surfaces are called the faces of the lens.
The line joining the centres of the spheres is called the axis of the lens.

Lenses of different forms are distinguished by names indicating the nature of their bounding surfaces with respect to the external medium.

A lens, of which both spherical boundaries are convex towards the outside, is called a double convex lens.

A lens, of which one face is convex, and the other concave to the outside, is called a convexo-concave, or concavoconvex lens, according as the light falls first on the convex or concave face respectively.

A lens, of which one face is convex, and the other plane, is called convexo-plane or plano-convex.

The terms double concave, concavo-plane, and plano-concave, are intelligible without farther explanation.

A lens, which is on the whole thicker at the middle than at the borders, is called generally a convex lens, while one, which is on the whole thinner at the middle than at the borders, is called a concave lens.

A concavo-convex or convexo-concave lens, which is thicker in the middle than at the borders, is sometimes called a meniscus.
67. A pencil is incident on a lens of small thickness in such a manner that its axis before refraction coincides with

the axis of the lens. It is required to find its geometrical focus after refraction through the lens.

It is clear that the axis of the pencil, after refraction into the lens, and again after emergence, will still coincide with the axis of the lens.

Let Q be the origin of light, $Q A B$ the common axis of the pencil and the lens. Let r, s be the radii of the first and second surfaces of the lens respectively, μ the refractive index from the external medium into the lens.

Let q be the geometrical focus of the pencil after the first refraction, F its geometrical focus after emergence. Let $A B$, the thickness of the lens, be so small that we may neglect it in comparison with $A Q$ and $A F$.

Let

$$
A Q=u, A F=v
$$

Then for the first refraction, by Article 29, we have

$$
\frac{\mu}{A q}-\frac{1}{u}=\frac{\mu-1}{r} .
$$

For the second refraction we may consider the pencil to diverge from q, and F to be its geometrical focus, and remembering that the index of refraction from the lens into the external medium is $\frac{1}{\mu}$, we have

$$
\begin{aligned}
& \frac{\frac{1}{\mu}}{A F}-\frac{1}{A q}=\frac{\frac{1}{\mu}-1}{s}, \\
& \frac{1}{v}-\frac{\mu}{A q}=-\frac{\mu-1}{s},
\end{aligned}
$$

adding this to the former equation we have

$$
\frac{1}{v}-\frac{1}{u}=(\mu-1)\left(\frac{1}{r}-\frac{1}{s}\right) \cdots \cdots \cdots \cdots \cdots(1) .
$$

If the original pencil consist of parallel rays, u is infinite, and if the corresponding value of v be f, we have

$$
\frac{1}{f}=(\mu-1)\left(\frac{1}{r}-\frac{1}{s}\right)
$$

This quantity f is called the focul length of the lens, and the geometrical focus of a pencil of parallel rays incident on the lens parallel to the axis, is called the principal focus of the lens.

The points Q and F are called conjugate foci. By means of formula (2) the relation (1) can be written

$$
\begin{equation*}
\frac{1}{v}-\frac{1}{u}=\frac{1}{f} \tag{3}
\end{equation*}
$$

If the thickness $A B$ be not neglected, and u be measured from A, and v from B, the second equation becomes
whence

$$
\frac{1}{v}-\frac{\mu}{B q}=-\frac{\mu-1}{s},
$$

$$
\frac{B q}{\mu}=\frac{1}{\frac{1}{v}+\frac{\mu-1}{s}},
$$

also

$$
\frac{A q}{\mu}=\frac{1}{\frac{1}{u}+\frac{\mu-1}{r}} .
$$

Hence if $A B=t$, we obtain

$$
\begin{equation*}
\frac{B q-A q}{\mu}=\frac{t}{\mu}=\frac{1}{\frac{1}{v}+\frac{\mu-1}{s}}-\frac{1}{\frac{1}{u}+\frac{\mu-1}{r}} . \tag{4}
\end{equation*}
$$

The formulæ (1) or (3) are however sufficiently accurate in almost all cases, and will be used hereafter.
68. It is easy to see that if r and s have opposite signs, the lens is double concave or double convex. In the former case r is positive and s negative and therefore f is positive. Similarly in the latter case f is negative.

If r and s be both positive, the lens is concavo-convex, and f will be positive or negative according as $\left.\frac{1}{r}\right\rangle$ or $\left\langle\frac{1}{s}\right.$, that is, as the curvature of the first face is greater or less than that of the second, that is, according as the lens is on the whole concave or convex.

If r and s be both negative, the lens is convexo-concave, and it will again appear that f is positive or negative according as the lens is on the whole concave, or on the whole convex.

Thus we can say generally that the focal length of a concave lens is positive, and the focal length of a convex lens is negative.
69. There is one case of a lens, having a thickness which may be called considerable, that possesses some practical interest, namely, when the bounding surfaces are portions of the same sphere.

In this case it is convenient to use the formula of Art. 37, so as to have the same point of reference for the two refractions.

Let O be the centre of the sphere of which the faces of the lens are portions; let Q be the origin of light and q^{\prime} and q the foci after refraction at the first and second surfaces respectively. Let $O Q=p, O q=q$, and $O A=r$.

For the first refraction, we have

$$
\frac{\mu}{p}-\frac{1}{O q^{\prime}}=\frac{\mu-1}{r}
$$

For the second refraction, remembering that the refractive index is $\frac{1}{\mu}$, and the radius $O B$, being drawn to the left from O, must be considered negative, we have

$$
\begin{aligned}
& \frac{\frac{1}{\mu}}{O q^{\prime}}-\frac{1}{q}=-\frac{\frac{1}{\mu}-1}{r} . \\
\therefore & \frac{1}{O q^{\prime}}-\frac{\mu}{q}=\frac{\mu-1}{r} .
\end{aligned}
$$

\therefore adding these equations, we have

$$
\begin{aligned}
\frac{\mu}{p}-\frac{\mu}{q} & =\frac{2(\mu-1)}{r}, \\
\therefore \frac{1}{q}-\frac{1}{p} & =-\frac{2(\mu-1)}{\mu r} .
\end{aligned}
$$

A lens of the above form has the advantage that any line through O may be considered as its axis, and thus pencils from any point may be considered as directly incident. Such lenses have accordingly been sometimes used as simple magnifiers instead of the ordinary lenses (Art. 85).
70. The changes of relative position of the conjugate foci of a lens can be traced out in a similar manner to that adopted in Article 34.

We will take the case of a concave lens, when consequently f is positive.

From the formula

$$
\frac{1}{v}-\frac{1}{u}=\frac{1}{f}
$$

we see that as u increases, so must v; and if u decreases, so must v. Hence the conjugate foci move in the same direction.

Take a point F_{1}^{\prime} in the axis of the lens, in front of the lens at a distance f from A, and also a point F_{2} behind the lens at an equal distance from A.

When Q is at an infinite distance to the right of A, the incident rays are parallel, and u is infinite; we thus get $v=f$, or F is at F_{1}.

As Q travels up towards A, F also travels towards A, and when u is very small, $\frac{1}{u}$ being very large, it follows that $\frac{1}{v}$ is very large, and therefore v is very small. Hence when Q gets to A, F^{\prime} also arrives at A.

When Q passes to the left of A so that u is negative, v will be negative until u is numerically equal to f, which is the case when Q is at F_{2}. Hence while Q travels from A to F_{2}, F travels from A to an infinite distance to the left.

When Q is at $F_{2}, u=-f$, and therefore $v=\infty$. Hence the refracted pencil consists of parallel rays.

As Q travels to the left of F_{2}, u is negative and numerically greater than f. Hence v is positive and F travels up from a great distance to the right, towards F_{1}; which point it reaches when Q has gone to an infinite distance to the left and the incident rays are again parallel.

The student can exercise himself in tracing the changes of position of Q and F in the case of a convex lens.
A. G. o.
71. Before discussing the form of an oblique pencil after refraction through a lens, we must investigate the position of a point which is known as the centre of the lens.

The centre of a lens is the point in which lines joining the extremities of parallel radii of the two bounding surfaces cut the axis.

This point is one of the centres of similitude of the two spherical surfaces ; we proceed to find its position.

Let $B A O_{1} O_{2}$ be the axis of the lens, $O_{1} P$ any radius of the first surface; $\mathrm{O}_{2} Q$ a parallel radius of the second surface.

Let $Q P$ or $Q P$ produced meet $B A O_{1} O_{2}$ in C. Then C is the centre of the lens and is a fixed point whatever pair of parallel radii we employ.

Let $A B$ the thickness of the lens $=t, A O_{1}=r, B O_{2}=s$. Then by similar triangles

$$
\begin{gathered}
C O_{1}: C O_{2}:: O_{1} P: O_{2} Q \\
\\
:: r: s, \\
\therefore \frac{r-A C}{s-t-A C}=\frac{r}{s} ; \therefore A C=\frac{r t}{s-r} .
\end{gathered}
$$

If t be very small, $A C$ is very small and the centre nearly coincides with A or B.

The centre of a lens, determined as above, has the following important optical property.

Any ray passing through a lens in such a manner that its direction, while within the lens, passes through the centre, will on emerging from the lens have a direction parallel to its direction when incident on the lens.

This follows at once from the fact that the normals at the two points where refraction in this case takes place are parallel, and therefore the effect on this ray is the same as if it had been refracted through a plate.
72. We have now to distinguish between the cases of oblique refraction through a lens.

First, centrical refraction, when the central ray or axis of the pencil passes through the centre of the lens after refraction at the first surface.

In this case the axis of the pencil undergoes no deviation. Refraction through a lens is usually centrical when light from any natural object falls upon the lens so as to fill up its whole surface. It may happen however, as in Galileo's telescope (Art. 98), that only a portion of this light is utilised afterwards for purposes of vision, in which case we have an example of the second kind of oblique refraction or

Excentrical refraction: A pencil is said to be excentrically refracted through a lens when the axis of the pencil, while within the lens, does not pass through the centre of the lens.

The axis of such a pencil does therefore undergo deviation in passing through the lens.

Excentrical refraction usually takes place when light from an image formed by reflection or refraction falls on a lens. The light emitted by such an image differs from that emitted by a real object in that it only can diverge from the image in the lines in which it had previously converged to form the image. Hence the pencil of light from any point of such an image is limited by its own nature, and not by the lens on which it falls.
73. We can now discuss the form of a pencil obliquely and centrically refracted through a thin lens.

Let Q be the origin of light, and let q_{1}, q_{2} be the primary and secondary foci after the first refraction. Let Q_{1}, Q_{2} be the primary and secondary foci after the second refraction.

Let ϕ be the angle of incidence of the axis at the first surface, which is also the angle of emergence at the second.

Let us suppose the lens so thin that A, B and C may

sensibly coincide, and let μ be the index of refraction into the lens;
that

$$
C Q=u, C Q_{1}=v_{1}, C Q_{2}=v_{2} .
$$

Then for the first refraction, by Art. 46,

$$
\begin{gathered}
\frac{\mu \cos ^{2} \phi^{\prime}}{C q_{1}}-\frac{\cos ^{2} \phi}{u}=\frac{\mu \cos \phi^{\prime}-\cos \phi}{r}, \\
\frac{\mu}{C q_{2}}-\frac{1}{u}=\frac{\mu \cos \phi^{\prime}-\cos \phi}{r} .
\end{gathered}
$$

Again for the second refraction, remembering that the index of refraction is $\frac{1}{\mu}$, and that ϕ^{\prime} is the angle of incidence, and ϕ that of refraction, we have

$$
\begin{gathered}
\frac{\frac{1}{\mu} \cdot \cos ^{2} \phi}{v_{1}}-\frac{\cos ^{2} \phi^{\prime}}{C q_{2}}=\frac{\frac{1}{\mu} \cos \phi-\cos \phi^{\prime}}{s}, \\
\frac{1}{v_{2}}-\frac{1}{C q_{2}}=\frac{\frac{1}{\mu} \cos \phi-\cos \phi^{\prime}}{s} .
\end{gathered}
$$

Multiplying these equations by μ, and adding to the former pair, each to each, we have

$$
\begin{gathered}
\frac{\cos ^{2} \phi}{v_{1}}-\frac{\cos ^{2} \phi}{u}=\left(\mu \cos \phi^{\prime}-\cos \phi\right)\left(\frac{1}{r}-\frac{1}{s}\right), \\
\frac{1}{v_{2}}-\frac{1}{u}=\left(\mu \cos \phi^{\prime}-\cos \phi\right)\left(\frac{1}{r}-\frac{1}{s}\right) .
\end{gathered}
$$

If ϕ be small, which is usually the case in practice, $\cos \phi$ and $\cos \phi^{\prime}$ may be taken as unity and we obtain $v_{1}=v_{2}$. Each of these quantities has the same value as that of v in the formula for a direct pencil, namely

$$
\frac{1}{v}-\frac{1}{u}=\frac{1}{f} .
$$

74. The exact investigation of the form of a pencil after excentrical refraction through a lens is much too difficult for an elementary treatise. It will be sufficient to consider any such pencils as small portions of centrical oblique pencils.

Thus if $Q R$ be the axis of a pencil excentrically incident on a lens at R; we may consider this pencil as a portion of a large oblique pencil, whose axis is $Q C, C$ being the centre of the lens.

If Q_{1} be the focus of this larger pencil, determined in accordance with the remark at the end of the last Article, Q_{1} will lie in $C Q$ and will be approximately the focus of the smaller pencil after refraction.

Thus we shall assume that when a small pencil is excentrically refracted through a lens, after refraction it diverges from, or converges to, some point in the line joining the origin of light with the centre of the lens.
75. We have thus far considered refraction through one lens only. There are two cases in which it is important to consider refraction through two or more lenses.

The first case is that of centrical refraction through two thin lenses having the same axis and placed in contact with each other at their centres.

Let a direct pencil be incident centrically on such a combination. Let f_{1} be the focal length of the first lens, f_{2} that of the second.

We shall suppose the lenses so thin that their centres may be supposed coincident. In almost all cases that occur, the thickness of the lenses is a very small quantity compared with the other lengths that are involved.

Let u be the distance of the origin of light from the common centre of the lenses, v^{\prime} the distance from the same point of the geometrical focus after refraction through the first lens, and v the distance of the final geometrical focus from the same point.

Then we have by Art. 67, equation (3),

$$
\begin{aligned}
& \frac{1}{v^{\prime}}-\frac{1}{u}=\frac{1}{f_{1}}, \\
& \frac{1}{v}-\frac{1}{v^{\prime}}=\frac{1}{f_{2},}
\end{aligned}
$$

\therefore adding

$$
\frac{1}{v}-\frac{1}{u}=\frac{1}{f_{1}}+\frac{1}{f_{2}} .
$$

If F be the focal length of a single lens which, if placed with its centre at the same point as the common centre of the above lenses, would produce the same refraction in the pencil, we have

$$
\frac{1}{v}-\frac{1}{u}=\frac{1}{F},
$$

therefore

$$
\frac{1}{F}=\frac{1}{f_{1}}+\frac{1}{f_{2}} .
$$

The lens whose focal length is F is sometimes said to be equivalent to the combination of the two lenses.

A similar formula will easily be seen to hold for the focal length of a lens equivalent to any number of lenses with a common axis, placed in contact.
76. The term equivalent lens is more usually defined in the following manner.

One lens is said to be equivalent to a combination of two or more lenses having a common axis, when it produces the same deviation in the axis of an excentrical pencil incident parallel to the axis, as the combination does, the equivalent lens being placed in the position of that lens on which the light falls first.

Let f_{1}, f_{2} be the focal lengths of the lenses, $P Q$ the axis of a pencil incident excentrically at Q on the first lens, $P Q$ being parallel to the common axis of the lenses. Let $Q R$, $R S$ be the directions of this axis after refraction through the first and second lenses respectively, meeting the axis of the lenses in E and H respectively. Let A, B be the centres of the two lenses and let $A B=a$.

Then, $P Q$ being parallel to the axis of the lens A, we have $A E=f_{1}$.

Also, since we may consider $Q R$ to be a ray of a pencil proceeding from E and incident on the second lens, we have

$$
\begin{gather*}
\frac{1}{B H}-\frac{1}{B E}=\frac{1}{f_{2}}, \\
\frac{1}{B H}=\frac{1}{f_{1}+a}+\frac{1}{f_{2}} \\
\therefore B H=\frac{f_{2}\left(f_{1}+a\right)}{f_{1}+f_{2}+a} \tag{1}
\end{gather*}
$$

Again if F be the focal length of the required equivalent lens, and we draw $Q K$ parallel to $H R S$ to meet $B A$ in K, it is clear that $A K=F$, since the equivalent lens, placed with its centre at A, is to bend the ray $P Q$ so as to be parallel to $R S$.

Also if we suppose the curvatures of the lenses small, we have by similar triangles

$$
\begin{gather*}
\frac{A Q}{B R}=\frac{A E}{B E}=\frac{f_{1}}{f_{1}+a} . \\
\text { Also } \\
\frac{A Q}{B R}=\frac{A K}{B H} ; \\
\therefore A K=F=\frac{B H \cdot f_{1}}{f_{1}+a}=\frac{f_{1} f_{2}}{f_{1}+f_{2}+a} \cdots \cdots \text { by (1), } \tag{2}\\
\therefore \frac{1}{F}=\frac{f_{1}+f_{2}+a}{f_{1} f_{2}}=\frac{1}{f_{1}}+\frac{1}{f_{2}}+\frac{a}{f_{1} f_{2}} \cdots \cdots \cdots \cdots(2) .
\end{gather*}
$$

We have drawn a figure in which both lenses are concave and consequently F, f_{1} and f_{2} are all positive. In the most important cases in practice the reverse is the case, f_{1} and f_{2} and consequently \vec{F}^{\prime} being negative.

The formula giving the numerical value of F in terms of the numerical values of the focal lengths of the two lenses is deduced from (2) by altering the signs of F, f_{1}, f_{2}.

We thus have,

$$
\begin{equation*}
\frac{1}{F}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{a}{f_{1} f_{2}} . \tag{3}
\end{equation*}
$$

Either of these formulæ includes that of the last Article, which may be deduced by making a to vanish.

Any other case of refraction through a number of lenses may be similarly treated; by considering the point to which the pencil converges, or from which it diverges after refraction through one lens, as the origin of the pencil incident on the next lens, the geometrical focus after refraction through any number of lenses can be determined.

EXAMPLES. CHAPTER VI.

1. Prove that the centre of a lens, of which one bounding surface is a plane, lies on the curved surface. Also that the centre of a double concave or double convex lens lies within the lens.
2. A concave mirror, of radius r, has its centre at the centre of a convex lens, and the axes of the two coincide. If f be the focal length of the lens, and if rays proceeding from a point at a distance u from the lens, after refraction through the lens, reflection at the mirror, and a second refraction through the lens, emerge as a pencil of parallel rays, prove that

$$
\frac{1}{u}+\frac{2}{r}=\frac{2}{f}
$$

3. A sphere of glass, of radius R, has a concentric spherical cavity of radius r. A pencil of parallel rays is directly refracted through the shell. Show that the distance of the geometrical focus from the centre of the spheres after emergence is

$$
\frac{1}{2} \frac{\mu}{\mu-1} \cdot \frac{R r}{R-r},
$$

μ being the index of refraction.
4. A hemisphere of glass has its spherical surface silvered; light is incident from a luminous point Q, in the axis of figure produced, on the plane surface. Show that if q is the geometrical focus of the pencil after refraction into the hemisphere, reflection at the silvered surface and again refraction out of the hemisphere,

$$
\frac{1}{A q}-\frac{1}{A Q}=\frac{2 \mu}{O A},
$$

A being the centre of the hemisphere, O its vertex, and μ the refractive index of glass.
5. The ends of a glass cylinder are worked into convex spherical surfaces whose radii are equal to the length of the
cylinder, and whose centres are at the ends of the axis of the cylinder. Prove that the geometrical focus of a pencil after direct refraction through the ends of the cylinder is determined by the equation

$$
\frac{\mu^{2}}{v}-\frac{1}{u}=-\frac{\mu^{2}-1}{r},
$$

where u and v are measured from the face nearest the origin of light, and r is the length of the cylinder.
6. A ray of light is incident on a portion of a refracting medium in the shape of a prolate spheroid, parallel to the axis. The excentricity of the generating ellipse of the spheroid being $\frac{1}{\mu}$, show that the deviation of the ray after emergence at the opposite side will be twice the angle which the normal at the point of emergence makes with the axis.
7. A solid transparent sphere is composed of a small solid sphere of radius a, and two concentric spherical shells each of thickness a. The refractive indices of these beginning from the centre are $4 \mu, 2 \mu, \mu$, respectively. A pencil of rays is incident directly on the sphere and, after refraction through all three substances, on emerging diverges from a point on the outer surface. Show that the incident pencil diverges from a point whose distance from the centre of the sphere is $\frac{3 \mu \pi}{\mu+1}$.
8. Show that the focal length of the sphere formed by two equal hemispheres of glass of different kinds, is equal to the focal length of an equal sphere of glass whose refractive index
is

$$
=\frac{2 \mu^{\prime 2}}{\left(\mu+\mu^{\prime}\right)\left(1+\mu^{\prime}-\mu\right)},
$$

where μ and μ^{\prime} are the refractive indices of the two hemispheres.
9. From a cubic inch of glass $\left(\mu=\frac{3}{2}\right)$ the inscribed sphere is removed, a film of glass remaining at the points of contact. The cavity is filled with water $\left(\mu=\frac{4}{3}\right)$. A bright point is
placed on the axis at a distance of one inch from one face of the cube. Find the geometrical focus after refraction through the cube.
10. A hollow spherical shell of glass $\left(\mu=\frac{3}{2}\right)$ is filled with water $\left(\mu=\frac{4}{3}\right)$. Show that a pencil of parallel rays after passing through the whole will converge to a point at a distance from the surface of the glass equal to $(r+t) \frac{3 r+t}{3 r-t}$, where r is the radius of the water sphere, and t the thickness of the glass.
11. The front surface of a mirror is spherical, the back, which is silvered, is plane. If α, β be the distances from the centre of the mirror of the two images of a luminous point placed in the axis of the mirror, which are formed by reflection at the back and front of the mirror respectively, show that

$$
\frac{1}{\alpha}+\frac{1}{\beta}=\text { constant, }
$$

the thickness of the mirror being neglected.
12. A transparent sphere, radius a, is silvered at the back, and there is a speck within it, half way between the centre and the silvered side. Prove that the distance between the images formed, (1) by one refraction, (2) by one reflection and one refraction, is

$$
\frac{2 \mu a}{(3-\mu)(\mu-1)} .
$$

13. A lens is placed at the centre of a concave mirror, the axes being coincident; a pencil is incident directly on the lens, and after refraction is reflected at the mirror and again refracted through the lens: prove that the last geometrical focus is the same as if the pencil had been once reflected at a mirror coincident with the image of the concave mirror formed by the lens.
14. The focal length of a double equiconcave lens, whose refractive index is $\frac{3}{2}$, is five inches; prove that the distances from the lens of the images of a distant object formed (1) by
reflection at the first surface, (2) by one reflection at the second surface, (3) by two reflections at the second surface, are $2 \frac{1}{2}$ inches, $1 \frac{1}{4}$ inch, and $\frac{1}{2}$ inch respectively.
15. Prove that if a double convex lens be constructed with each of its surfaces a hyperboloid of revolution with excentricity equal to the refractive index, a pencil of rays diverging from the external focus of one surface will be accurately refracted to the external focus of the other.
16. An object O is placed in front of two lenses P and Q having a common axis, and an image of it is formed by them: prove that the position of that image will not be altered by interposing between P and Q two lenses of equal and opposite focal lengths, provided that the absolute focal length of either be half the harmonic mean between their distances from the image of 0 formed by P.
17. Two lenses whose focal lengths are each equal to f are placed at a distance apart equal to $\frac{2}{3} f$. Find the focal length of the equivalent lens.
18. Two lenses whose focal lengths are f and $3 f$ are placed at a distance apart equal to the difference of their focal lengths. Find the focal length of the equivalent lens.
19. Two lenses, one concave and the other convex, are placed in contact and have a common axis. Their focal lengths are required to be in the ratio of 52 to 33 , and the focal length of the combination is to be six feet. Find the focal length of each lens.
20. Two lenses whose focal lengths are each f are placed at a distance $\frac{1}{2} f$ apart. Find the focal length of the equivalent lens. What is the focal length of the equivalent lens, when the two lenses are placed in contact?
21. The radii of the surfaces of a lens are $4 a$ and $2 a$. Those of the surfaces of another $2 a$ and $6 a$. Find the focal length of the lens which is equivalent to them when placed in contact, the refractive index being $\frac{3}{2}$.
22. A small parallel pencil of light is obliquely incident on a refracting sphere, and emerges after one internal reflection. Find the positions of the primary and secondary foci after emergence. Find what the angle of incidence must be that the emergent rays in the primary plane may be parallel.
23. A ray falls upon a lens making the incident angle equal to $\tan ^{-1} \mu, \mu$ being the index of refraction. Its direction within the lens passes through the centre. Prove that the distance between its directions before incidence, and after emergence, is to the distance it traverses within the lens as

$$
\mu^{2}-1 \text { to } \mu^{2}+1
$$

24. The focal length of a lens in vacuo is five feet. The refractive indices of glass and water being $\frac{3}{2}$ and $\frac{4}{3}$ respectively, find the focal length of the lens when placed in water.
25. A pencil of parallel rays is refracted through a sphere of radius r and refractive index μ. Prove that the geometrical focus after emergence is at the same point as if it had been only refracted at the first surface of a concentric sphere of radius $\frac{\mu r}{2}$.
26. Two convex lenses, of focal lengths a and b, are placed at a distance c : if P and Q be conjugate foci, F, G the respective positions of P and Q when Q and P are respectively at an infinite distance, prove that

$$
P F \cdot G Q=\left(\frac{a b}{a+b-c}\right)^{2}
$$

27. A double convex lens is formed by two equal paraboloidal surfaces cut off by planes through the focus perpendicular to the axis. Prove that for rays passing in the neighbourhood of the axis the focal length measured from the posterior surface of the lens is $\frac{2 a}{\mu^{2}-1}$, and the distance between a bright point and its image is a minimum when it is $2 a \cdot \frac{\mu+1}{\mu-1}, 4 a$ being the latus rectum of either of the generating parabolas, and μ the refractive index of the glass.
28. A plano-convex lens is in contact with a concavoplane lens on the same axis, the refractive indices being μ, μ^{\prime}, and r the radius of the common spherical surface. A ray which cuts the axis at a small angle ϵ and at a distance d from the compound lens is refracted through it. Prove that the deviation of the ray is $\left(\mu-\mu^{\prime}\right) \frac{d}{r} \epsilon$.
29. A hollow globe of glass has a speck on its interior surface ; if this be observed from a point outside the sphere on the opposite side of the centre, prove that the speck will appear nearer than it is by a distance $\frac{\mu-1}{3 \mu-1} \cdot t$, provided that t the thickness of the glass is equal to the radius of the internal cavity, and μ is the refractive index for glass.
30. A pencil issuing from a given point falls directly on a refracting sphere. If Q_{1} be the focus of the part reflected at the front surface, Q_{2} the focus of the part which emerges after reflection at the back, and Q_{3} the focus of the part which goes straight through, show that

$$
\frac{2}{O Q_{3}}+\frac{1}{O Q_{1}}+\frac{1}{O Q_{2}}=0,
$$

where O is the centre of the sphere.

¿CHAPTER VII.

ON LMAGES AND SIMPLE OPTICAL INSTRUMENTS.

77. We can now explain the manner in which an image or representation of an object is produced by a lens.

We will first take the case of a convex lens.
Let C be the centre of such a lens, $C Q$ its axis, $P Q$ the object.

Fig. (1).

Fig. (2).

Then a pencil of rays from any point P in this object will fall upon the lens so as to cover the whole face of the lens, and will thus be incident centrically. This pencil after refraction will approximately converge to a point p in $P C$ produced, or diverge from some point p in $C P$ produced, the distance $C p$ being given by the formula

$$
\frac{1}{C p}=\frac{1}{C P}-\frac{1}{f} \quad(\text { Art. 73, end }), \quad 6^{00}
$$

f being the numerical value of the focal length of the lens. If $C P<f, C p$ is positive, and p lies to the right of C. If $C P>f, C p$ is negative and p lies in $P C$ produced.

In the first case there emerges from the lens a pencil of rays apparently diverging from a point p as in fig. (1), and in the other case a pencil of rays converging to a point p as in fig. (2).

The same will be true of the pencils which emanate from other points in $P Q$.

The assemblage of points from which, in the one case, the pencils after refraction appear to diverge, or to which in the other case they converge, is called the image of the object $P Q$ formed by the lens.

In the former case the image is called a virtual image, in the latter a real image, these terms being defined as follows.

A real image formed by a lens or mirror is an image, through the points of which the pencils of light which form the image do actually pass before diverging from them.

A virtual image is one through the points of which the rays of light do not actually pass.

The image in fig. (1) is called an erect image, that in fig. (2) is an inverted image.

Secondly if the light from any object fall upon a concave lens it is easy to see that a virtual image of the object is formed nearer to the lens than the object. The position of

Fig. (3).

any point p of the image is determined in terms of that of the corresponding point P of the object by the formula

$$
\frac{1}{C p}-\frac{1}{C P}=\frac{1}{f},
$$

C being the centre of the lens, and p being on the line $C P$.
In a similar way the formation of an image by a mirror can be explained (Art. 47).
78. In any of these cases an eye suitably placed so as to receive the pencils of light after divergence from the points of the image will be rendered sensible of the apparent existence of an object in the position of the image.

This image will more or less closely resemble the original object. It has however two defects.
(1) Indistinctness, arising from the fact that the pencils which emanate from various points in the original object do not accurately converge to or diverge from points after refraction through the lens; the formulæ we have used being only approximations. The image will thus consist of a number of small overlapping circles or ovals, which will cause the general appearance to be somewhat hazy. With good lenses, if the curvatures of their surfaces be not very large, this defect is not very serious, and can be somewhat alleviated by a proper choice of the form of the lens.

> A. G. O.
(2) Curvature. It is clear that the formula

$$
\frac{1}{C p}-\frac{1}{C P}=-\frac{1}{f}
$$

will not give $C p$ in a constant ratio to $C P$. Hence for instance if $P Q$ be a straight line the image $p q$ will not be a straight but a curved line.

The image of any object will similarly be differently curved from the object itself.

The image is also rendered indistinct and imperfect by the fact that white light is composed of a great number of kinds of light of unequal refrangibility. This subject is treated of in Chapter IX.
79. The preceding Articles furnish a ready means of ascertaining by experiment the focal length of a convex lens. If it be placed so as to form a real image q, of any bright object Q in its axis, and the distances of the point and its image from the lens be measured, the focal length is known from the formula which applies to fig. (2) of Art. 77,

$$
\frac{1}{f}=\frac{1}{C Q}+\frac{1}{C q},
$$

where f is the numerical value of the focal length.
It can be more readily found by the following method.
Since

$$
\frac{1}{C Q}+\frac{1}{C q}=\frac{1}{f},
$$

we have

$$
C Q+C q=Q q=\frac{C Q \cdot C q}{f}
$$

Hence $Q q$ the distance between the point and its image is least when $C Q . C q$ is least, or when $\frac{1}{C Q} \cdot \frac{1}{C q}$ is greatest. But it is known that when the sum of two quantities is constant their product is greatest when they are equal. Hence $\frac{1}{C Q} \cdot \frac{1}{C q}$ is greatest when

$$
\frac{1}{C Q}=\frac{1}{C q}=\frac{1}{2 f}, \text { or } C Q=C q=2 f .
$$

Hence the least value of $Q q$ is $4 f$.

Let then a candle-flame or other light be fixed, and the lens be placed just a little farther from it than the focal length; a real image of the light will be formed at a great distance off, which can be received on a screen. Move the lens slowly away from the light. The image will be found to approach nearer to the light till the lens has been moved to such a position that it is just about as far from the candle as it is from the image received on the screen. If the lens be moved still farther from the light, it will be found that the image begins to recede.

By the above investigation, if we measure the distance between the light and its image in their nearest position, one quarter of that distance will be the focal length required.
80. A good illustration of the formation of a real image is furnished by the Photographic Camera.

This consists essentially of a box with a lens fixed at one end; at the other end of the box is placed a screen. The axis of the lens being directed to the object whose photograph is required, an inverted image of the object is formed within the box. On placing the screen to coincide with this image, a distinct inverted representation of the object is seen on the screen, and if for the screen be substituted a piece of glass properly prepared, the chemical action of the light on the substances with which the glass is covered will leave an accurate delineation of the lights and shadows of the original object.
81. Instead of receiving the inverted image, formed as in the last Article, immediately on a screen, let the rays of light be caught, before they converge to form the image, by

7-2
a plane mirror placed within the box and inclined to the axis of the lens at an angle of 45°. The image will then be distinctly formed on a screen placed in a proper position in a plane parallel to the axis of the lens.

Thus, if $Q C$ be the axis of the lens, $A B$ the mirror, the pencil of light emanating from P would after refraction through the lens be made to converge to a point p in $P C$ produced.

The mirror $A B$ intercepts the light before it reaches p, and causes it to converge to p^{\prime}, a point as far in front of $A B$ as p is behind.

Thus an image $p^{\prime} q^{\prime}$ of $P Q$ will be formed, and will be distinctly visible on a screen of oiled paper or thin ground glass placed in the top of the box.

Such an instrument is called a Camera Obscura.
82. The Eye itself furnishes another illustration of the formation of a real inverted image.

The figure represents a section of the right eye by a plane through the optic nerve. The external boundary of this consists of portions of two spherical surfaces, the larger and back part being opaque, the smaller spherical portion which is in front being protuberant and transparent. The back part is called the Sclerotic membrane; the front part, which is set in the sclerotic like a watch-glass in its rim, is called the Cornea.

Within the sclerotic is another membrane called the Choroid membrane. This covers nearly the whole of the
internal surface of the sclerotic, having a circular opening in front. To the border of this circular opening is attached a membranous ring called the Iris, having its plane perpendicular to the line joining the centres of the cornea and the sclerotic. The external face of this ring is of various colours, and the aperture in its centre, called the Pupil, is capable of being enlarged or diminished, so as to admit more or less light.

Behind the iris, and with its axis in the line joining the centres of the cornea and sclerotic, is placed a transparent gelatinous substance of the form of a double convex lens, called the Crystalline lens. The face of this lens towards the anterior surface of the eye is flatter, its posterior surface more convex.

The space between the cornea and this lens is filled with a transparent fluid called the Aqueous humour, that between the crystalline lens and the back of the eye by a transparent fluid called the Vitreous humour.

At the back of the eye the Optic Nerve enters through the sclerotic and choroid membranes, and forming a slight protuberance within the latter, spreads out over nearly its whole extent into a delicate tissue of nerves called the Retina.

The refractive indices of the aqueous and vitreous humours are nearly equal to that of water, that of the crystalline lens is somewhat greater.

The whole of the inner surface of the choroid membrane is coloured a deep brown or black and is totally incapable of reflecting light.

If an object of any kind be placed in front of the eye, the rays from any point of it are incident on the cornea, and are refracted by the aqueous humour, the crystalline lens, and the vitreous humour, so as to converge to a point on the retina.

The eye thus optically resembles a photographic camera. A real inverted image of objects in front is formed on the retina of the eye, and by means of the optic nerve the impression is conveyed to the brain.

This impression remains for a short time after the light which forms it is withdrawn. Thus, for instance, if a bright point be whirled about in a circle, the eye will see it in each position for a short time after it has left that position, and if the point move with sufficient velocity the eye will see a ring of light.
83. The eye is capable of being changed slightly in form by the action of certain nerves, so as to bring rays which come from points at different distances accurately to a focus on the retina.

This adjustment can be effected at will within certain limits which vary for different eyes.

Some eyes can only be conveniently adjusted to view near objects, as they require considerable divergence in the pencils which they can refract accurately to a point on the retina; less divergent pencils being refracted by them to a focus in front of the retina.

In order to see distinctly objects at a greater distance, such eyes make use of concave lenses which form a virtual image of the object, nearer to the eye than the object itself (Art. 77). Such eyes are called short-sighted.

Some eyes, on the other hand, can only refract pencils having slight divergence, such as those which come from points at a great distance, accurately to points on the retina; more divergent pencils being refracted to points behind the retina.

Such eyes are called long-sighted. To enable them to see nearer objects, a convex lens is employed which forms a virtual image of any object, at a greater distance than the object, the pencils from points of which will not be too divergent to be refracted to a focus on the retina (Art. 77).

These remarks explain the use of spectacles.
84. A real image of any object looked at is formed in each eye of the observer. These images differ slightly from each other, as the positions of the two eyes with respect to any tolerably near object sensibly differ. Thus, in looking at a solid object, such as a round pillar, the right eye sees more of the right side, the left eye sees more of the left
side of the pillar. By combining the impressions produced on the mind by these two images we obtain an idea of the solidity of objects viewed, as also of their comparative distances.

The common Stereoscope is an application of the same principle. Two photographs are taken of the same object from points of view a little distance apart. These photographs are so placed that the rigat eye looks only at that one which was taken from a point of view most to the right, while the left eye looks at the other: by this means an appearance of relief can be imparted to pictures of solid objects, such as statuary, trees, or buildings.

This appearance can be produced even in the pictures of objects which are too distant to appear differently to our two eyes. For instance, if photographs of the moon be taken at two different times, on one of which, owing to libration in longitude, more of its east limb is visible, and on the other more of its west limb, and the two photographs be placed in a stereoscope, the two pictures combined will produce the impression of a solid globe of very small dimensions.
85. No eyes are capable of seeing distinctly objects placed very close to them. Consequently it is impossible for an unaided eye to obtain a clear view of a very small object; for such an object will not subtend a sensible angle at the eye, unless it is placed too near to the eye for the latter to be able to refract the rays emanating from any point of the object accurately to a focus on the retina.

In such a case a convex lens placed close to the eye, between the eye and the small object, will produce a virtual image of the object behind the lens (Art. 77, fig. 1), which will subtend the same angle at the centre of the lens as the object, and yet may be made to appear at any suitable distance.

Thus, by the use of such a lens, a small object may be magnified, that is, an image of it may be formed at such a distance as to be distinctly visible and subtend a sensible angle at the eye.

Such a lens, employed for this purpose, is called a simple Microscope, and is used in botanical and other investigations.

A combination of two lenses having a common axis, and placed a little distance apart, can be used for the same purpose : the first lens forming a virtual magnified image, which is again magnified by the second.

In either case the magnifying power is fairly measured by the ratio of the angle subtended at the eye by the final image to the angle which would be subtended by the object at the eye, if the object were placed at a distance from the eye equal to that of the final image. This ratio is easily seen to be the ratio of the linear magnitude of the final image to that of the object.

The magnifying power of the lens in fig. (1) of Art. 77 is thus represented by the fraction $\frac{p q}{P Q}$, which $=\frac{C p}{C P}=\frac{f}{f-C P}$, which is known if $C P$ be given.

In order to magnify or examine minutely a distant object we cannot use exactly the same method.

The following is the general plan on which Optical Instruments for this latter purpose are constructed:

A lens or mirror, called the Object-glass or Mirror, is first used to produce a real image of the distant object. This image is close at hand, and can be examined and magnified by a lens as if it were a real object.

Such instruments are called Telescopes. Their construction is explained in the next Chapter.

EXAMPLES. CHAPTER VII.

1. A convex lens, of focal length one-fifth of an inch, is used as a simple microscope by an eye which sees most distinctly at a distance of 14 inches ; find the magnifying power.
2. A long-sighted person, who can see most distinctly at a distance of two yards, uses glasses of two feet focal length;
at what distance from the glasses should the object be placed? and how much will it be magnified?
3. Show that when an image of any object is formed by a fixed convex lens, there are two positions of the object for which the size of the image is m times the size of the object, and that the distance between the two positions is $\frac{2 f}{m}, f$ being the focal length of the lens.
4. A screen, placed at right angles to the axis of a lens, receives the image of a small object. If the magnifying power of the lens in this position be 20 , then the distance of the lens from the screen is 21 times the focal length.
5. A bright point is placed on the axis of a convex lens, so that the distance between the point and its image is the least possible: prove that if a concave lens of the same focal length be introduced half-way between the bright point and the convex lens, the image will be moved half as far again from the lens.
6. A convex lens is held so that the distance between a bright point and its image is the least possible : two other lenses are then introduced, one half-way between the lens and the bright point, and the other half-way between the first lens and the image. If the image formed by refraction through the three lenses have the same position as the former image, prove that the sum of the focal lengths of the three lenses is algebraically zero.
7. A double convex lens of focal length f is at a distance b from a plane mirror, and the axis of the lens is perpendicular to the mirror; show that if a man places his eye at a distance from the lens $\frac{f(2 b-f)}{2(b-f)}$ on the other side from the mirror he will see the image of his eye by parallel rays.
8. A person who reads small print at a distance of two feet finds that with a pair of plano-convex spectacles he can read it at a distance of one foot; find the radius of the curved surface, the refractive index of glass being $\frac{3}{2}$.
9. If a convex lens be placed between any luminous object and a screen, find the position of the lens that a real image may be formed on the screen. Prove that there are two such positions, and that if m_{1}, m_{2} be the ratios of the image to the object in these two positions, $m_{1} m_{2}=1$.
10. When an object is placed before a convex lens whose focal length is f, at a distance $\frac{3}{2} f$ from the lens, show that the image is twice the object in linear dimensions. When the object is placed at double this distance from the lens, show that the length of the image is one-half the length of the object.
11. The image of a very distant object is formed by a convex lens; a plane mirror is placed at a distance from the lens equal to $\frac{3}{2}$ the distance of the image from the lens, perpendicular to the axis; show that a second real image will be formed by the reflected light on the other side of the lens, of the same linear dimensions as the first.
12. An object is placed at a distance c in front of a convex lens whose focal length is a, c being greater than a. A concave mirror whose focal length is b is placed at a distance a behind the lens. An image of the object is formed by rays which are refracted through the lens, reflected at the mirror, and again refracted through the lens. Show that this image is at a distance $\frac{a^{2}}{b}+c-2 a$ behind the lens, and that it is equal in magnitude to the original object, but inverted.
13. A magnifying-glass consists of two convex lenses whose thickness, as also the distance between them, may be neglected. When used by a person who can see most distinctly at a distance of eight inches, the ratios of the magnifying powers of the first lens alone, the second alone, and the two combined are as $3: 4: 5$. Find the focal lengths of the lenses used.
14. An object is placed in front of a combination of three co-axial convex lenses whose focal lengths are $\frac{3}{2}, \frac{1}{8}, \frac{3}{8}$ inches respectively, the distance between the first and second lenses being one inch and between the second and third half an inch. Show that the image finally formed is coincident with and equal in magnitude to the object, but inverted.

CHAPTER VIII.

ON COMPOUND OPTICAL INSTRUMENTS.
86. Telescopes are of two kinds:

Refracting Telescopes, in which a convex lens is employed to produce an image of the distant object.

Reflecting Telescopes, in which this image is produced by means of a concave mirror.
87. The most important kind of Refracting Telescope is usually called the Astronomical Telescope.

In its simplest form it consists of two lenses, placed so as to have a common axis, the lens which is nearest to the object viewed, and which is called the Object-glass, having a much greater focal length than the other, which is called the Eye-glass.

Let O be the centre of the object-glass, E that of the eye-lens, $P Q$ the object to be looked at, which is usually at a very great distance from the object-glass. The rays from any point P of this object will be incident centrically on the object-glass, and will converge to a point p in $P O$ produced (as in Art. 77, fig. 2). Thus a real inverted image $p q$ of the object is formed.

The eye-lens receives the pencil of rays which diverges from the point p and refracts them so as to make them diverge from some point p^{\prime} on $E p$ produced. (Art. 74.)

A virtual image $p^{\prime} q^{\prime}$ of the object will thus be formed, which can be seen by an eye placed close to the eye-lens.

By altering the position of the eye-lens the position of $p^{\prime} q^{\prime}$ may be altered until it is at a convenient distance for the eye to see it. It is usual to assume $p^{\prime} q^{\prime}$ at an infinite distance, st that the rays emerge parallel from the eye-lens. In viewing objects at a very great distance, such as the moon or stars, the eye will probably adjust itself so as to be fitted for receiving parallel rays, and if so, the above assumption will be correct.

In this case $E q$ will be the focal length of the eye-glass, and if $P Q$ be very distant from $O, O q$ will be the focal length of the object-glass.

Thus $O E$ will be the sum of the focal lengths of the lenses.

The eye-glass and object-glass are fixed in two tubes, of which the eye-glass tube slides in the other to permit of proper adjustment for different eyes.
88. The magnifying power of such a telescope will be fairly measured by the ratio of the angle subtended at the eye by the final image of any object to the angle subtended at the eye by the object itself.

If the distance of the object be very large compared with the length of the telescope, the angle subtended by the object at the eye of the observer will not appreciably differ from that subtended by it at the centre of the object-glass.

Thus, supposing the eye placed close to the eye-lens, the magnifying power will be appreciably

$$
\begin{aligned}
=\angle \frac{\angle P E q}{\angle P O Q} & =\frac{\angle p E q}{\angle p O q} \\
& =\frac{\tan p E q}{\tan p O q},
\end{aligned}
$$

since the angles are all small in practice,

$$
=\frac{\frac{p q}{E q}}{\frac{p q}{O q}}=\frac{O q}{E q}=\frac{\text { focal length of object-glass }}{\text { focal length of eye-glass }},
$$

taking the approximate values of the last Article for $O q$ and $E q$.
89. The office of the object-glass is thus to form near at hand an image of the distant object. The eye-glass is used to magnify this image just as if it were a real object. (Art. 85.)

This image differs however from a real object in that the rays of light do not diverge in all directions from the various points of it. The rays from p, for instance, only proceed in the lines in which rays have come to p from some point of the object-glass.

Thus, if the eye were simply placed to view $p q$ without the intervention of an eye-glass, not only would it have to be placed farther from $p q$ in order to ensure distinct vision, and $p q$ would thus appear to subtend a smaller angle at the eye, but the pencils from points in $p q$ a short distance away from the axis $O E$ would not come into the eye at all.

The image would thus not only not be magnified, but a much smaller portion of it would be seen than is the case when an eye-glass is used. Thus a second advantage of the eye-glass is, that the pencils from points outside the axis are bent round so as to enter an eye placed close to the eye-glass.

The amount of the object that is visible through the eyelens is termed the field of view. It will evidently be circular in form, and the angle subtended by its radius at the eye can be easily ascertained.

It is clear that any point p of the image will be distinctly seen, if the whole of the pencil which converges to form it is incident on the eye-glass.

This will be the case if the lowest ray, after passing through p, is incident on the eye-lens; thus the point farthest out of the axis, which is visible by a whole pencil, is a point p, such that the ray of its pencil which comes from the top of the object-glass just comes to the bottom of the eye-glass.

Let now $E C=y_{e}=$ half aperture of eye-glass,

$$
\begin{aligned}
A O & =y_{o}=\text { half aperture of object-glass }, \\
E q & =f_{e}=\text { focal length of eye-glass, } \\
O q & =f_{o}=\text { focal length of object-glass. }
\end{aligned}
$$

Drawing a line $h p k$ through p parallel to $E O$, we get by similar triangles

$$
\begin{aligned}
& C h: h p:: A k: k p ; \\
\therefore & y_{e}-p q: f_{e}:: y_{o}+p q: f_{o} ; \\
\therefore & f_{e} y_{o}+f_{e} \cdot p q=f_{o} y_{e}-f_{o} \cdot p q ; \\
& \therefore \quad p q=\frac{f_{0} y_{e}-f_{e} y_{o}}{f_{0}+f_{e}},
\end{aligned}
$$

and the angular radius of the field of view

$$
=\frac{p q}{q O}=\frac{f_{0} y_{e}-f_{e} y_{0}}{f_{0}\left(f_{e}+f_{0}\right)} .
$$

90. It is easy to see that from a point a little below p, a portion only of the pencil will fall upon the eye-lens, this
portion getting less and less until, from points beyond a certain distance from the axis, no part of the pencil will reach the eye-lens.

There will thus be a ring of points imperfectly seen, surrounding the distinct field of view. This ring is known as the Ragged Edge. It is usually destroyed by a material ring placed so as to stop all the rays of the pencils of which part only would fall on the eye-lens.

The radius of the aperture of this ring is clearly the value of $p q$ given in the last Article.

It will be noticed that the pencils from different points of the image $p q$ do not fill up the whole of the eye-glass. They are thus incident excentrically on the eye-glass in conformity with the remark of Art. 72.
91. The axes of the small pencils which fall on the eyepiece, and by means of which the image is finally seen, are bent in passing through the eye-lens.

It is found, when the calculations of the form of a pencil, after excentrical refraction through a lens, are carried to a higher approximation, that our assumption, that the virtual image p^{\prime} of any point p lies on the line $E p$, is not absolutely correct, and that it becomes less and less correct the farther the point p is distant from the axis.

The image $p^{\prime} q^{\prime}$ actually seen is thus distorted from the shape of $p q$, and ceteris paribus it is found that this distortion increases as the focal length of the eye-lens decreases.

To remedy in some measure this evil, a combination of two lenses placed at a short distance from each other is often employed instead of a single lens.

The axis of the excentrical pencil is thus bent round at one lens and again bent round at the other, and it is found by experience and by calculation that the distortion produced in this way is much less than would be produced by a single lens equivalent to the combination of the two lenses.
92. Two such combinations have been specially used. In the first, known as Ramsden's Eye-piece, the two lenses
are of equal focal length, and the distance between them is equal to two-thirds of the focal length of either.

The lens nearest to the eye is called the Eye-lens, and the other the Field-glass.

Thus let $p q$ be the image produced by the object-glass and let f be the numerical value of the focal length of either lens. Let F and E be the centres of the two lenses. The field-glass will form a virtual image of $p q$ in a position $p^{\prime} q^{\prime}$, such that

$$
\frac{1}{F q}-\frac{1}{F q^{\prime}}=\frac{1}{f} .
$$

This image, in accordance with the assumptions explained in Art. 87, will be nearly at the principal focus of the eyeglass. Thus $E q^{\prime}=f$, and since $E F=\frac{2}{3} f$, we must have $F q^{\prime}=\frac{1}{3} f$, whence $F q=\frac{1}{4} f$.

The eye-piece will therefore be placed so that the image formed by the object-glass is nearly at a distance $\frac{1}{4} f$ in front of the field-glass.
93. In the other combination, known as Huyghens' Eyepiece, the focal lengths of the lenses are in the ratio of 1 to 3 , the distance between them being equal to the difference of their focal lengths.

Let E and F be the centres of the eye-lens and fieldglass, f and $3 f$ the numerical values of their focal lengths. Then $E F=2 f$.

The eye-piece is so placed that the rays which, after refraction through the object-glass, converge to form any

point p of the image are incident on the field-lens before reaching p.

They are thus made to converge approximately to some point p^{\prime} in the line $F p$, and a real image $p^{\prime} q^{\prime}$ is formed by the field-lens.

This image must be nearly in the principal focus of the eye-lens, and must therefore be half-way between E and F.

We have also

$$
\frac{1}{F q^{\prime}}-\frac{1}{F_{q}^{\prime}}=\frac{1}{3 f}
$$

whence, since $F q^{\prime}=E q^{\prime}=f$, we get $F q=\frac{3 f}{2}=\frac{3}{4} F E$.
A second important advantage of Huyghens' eye-piece will be pointed out hereafter (Art. 117, end).
94. The image of the distant object formed by the objectglass being formed by centrical pencils, the angle subtended at the centre of the object-glass by any part of the object is equal to that subtended at the same point by the corresponding part of the image.

The latter angle, and consequently the former, can be deduced if we measure the linear magnitude of the part of the image, the distance of this image from the object-glass being known.

The image formed by the object-glass being, if we use a single lens or Ramsden's eye-piece, a real image; if a piece of glass with lines ruled on it at equal distances be placed to
A. G. o.
coincide with the image, it is clear that the lines on the glass will be distinctly seen through the eye-piece along with the image.

Thus the distances of points on the image from each other could be ascertained by noticing the number of intervals on the glass scale between them.

A better arrangement is to place in the field of view a framework carrying one or more fine wires or spider threads, which can be moved along the framework by means of a screw.

If the framework be so placed that the plane of the moveable wires coincides with the real image, the distance between any two points of the image can be measured by moving the wire from one point of the image to the other, and noting how many turns of the screw are required to effect this displacement. The distance between two consecutive threads of the screw being known, the required distance is thus obtained.

The obliquity of the pencils which are refracted by the object-glass is in practice always very small. The angle subtended at the centre of the object-glass by the line joining two points of the image is thus nearly proportional to the linear distance of the points from each other, and its circular measure will be nearly equal to that distance divided by the focal length of the object-glass.

Huyghens' eye-piece cannot be used for such measurements, as the image given by the object-glass is never actually formed.
95. The astronomical telescope gives us thus the means of viewing any distant object under a much greater angle than we could view it with the naked eye. It has also another advantage.

In viewing any object with the naked eye, only so much light comes from each point of the object as will fill the pupil of the eye.

In viewing the same object with the telescope, such an amount of light comes into the eye from each point of the
object as when originally proceeding from that point fills the object-glass.

Thus much more light will enter the eye in the latter case than in the former. A telescope enables us, for instance, to see stars which are so faint that the naked eye cannot distinguish them; and the larger the object-glass in diameter the more will this effect be produced.
96. The only condition necessary that a convex lens shall form a real image of an object in front of it is, that the object shall be farther from the lens than its principal focus (Art. 77).

The astronomical telescope may thus be modified so as to view near objects, if the focal length of the object-glass be diminished.

It then becomes a Compound Microscope.
Let O be the centre of the object-glass and let $P Q$ be the object, $O Q$ being a little greater than the focal length of the object-glass.

An inverted real image $p q$ is formed by the objectglass, which image is again viewed and magnified by the eye-lens.

In practice the conditions required to be satisfied by a microscope are so different from those of a telescope that such an instrument as the above would be of little real value.

The pencils from any point of the object are so divergent the object being near to the object-glass, and for points of
the object outside the axis so obliquely incident, that the approximations of the previous chapters of this treatise fail accurately to represent the facts.

In the compound microscopes which are actually used, a series of three lenses placed near together is substituted for the single lens O, and instead of a single eye-lens a compound eye-piece of two lenses is used.

The theoretical investigation of the proper forms of the lenses involves considerations into which this book cannot enter.
97. The compound microscope of the last Article produces an inverted image of the object placed in front of it. If then, instead of a single lens, or Ramsden's or Huyghens' eye-piece, a compound microscope be applied to view the real image formed by the object-glass of the telescope in Art. 87, the image formed by the object-glass which is inverted, will be inverted again, and the eye will see an erect image of the original object.

Such an arrangement is called an erecting eye-piece, and is applied to telescopes used for observation of terrestrial objects. The ordinary erecting eye-piece consists of four lenses, two of which may be considered as the object-glass of the compound microscope, and the other two as the eyepiece.

The magnifying power of the compound microscope can be increased by enlarging the distance between the objectglass and the eye-piece. Thus, in the figure of Art. 96, if $P Q$ be brought nearer to $O, p q$ will recede and become larger, and the eye-piece must be moved farther from 0 in order to ensure distinct vision.

The erecting eye-piece of a day telescope is frequently provided with an adjustment for altering the distance between the pairs of lenses, by which process the magnifying power of the eye-piece, and consequently of the telescope, can be increased or diminished according to the state of the weather or the requirements of the observer.
98. The second kind of refracting telescope is usually known as Galileo's Telescope, from the name of the inventor.

A double convex lens is employed as before to form an image of the distant object.

A concave lens is placed with its axis in the same line as that of the object-glass so as to catch the rays before they have converged to form the image.

Thus a pencil from a point P of the object, falling on the object-glass, would be refracted to a point p in $P O$ produced, 0 being the centre of the object-glass.

Some portion, not the whole, of this pencil is caught by the concave lens E, which is so placed that the pencil con-

verging to p is made to diverge from a point p^{\prime} in $p E$ produced. This will be the case if $E q$ be not less than the focal length of the lens E.

The pencil will then enter an eye placed close to E, as if it came from p^{\prime}, and the eye will see an erect image of $P Q$ at $p^{\prime} q^{\prime}$.

The lens E will be adjusted so that this image is at a convenient distance for distinct vision.

If we make the assumption that $p^{\prime} q^{\prime}$ is at an infinite distance, and $P Q$ also at an infinite distance, as in Art. 87 , it is
easy to see that $O q$ is the focal length of the object-glass, and $E q$ that of the eye-glass, so that $O E$ is the difference of the focal lengths of the object and eye-glasses.
99. The field of view in this telescope is limited by the object-glass, and not by the eye-glass as in the Astronomical Telescope. For it is clear that the pencil from every point that is clearly seen fills up the whole of the eye-glass, while it is only a portion of the pencil that actually falls on the object-glass which is used in producing vision.

The refraction of the pencils is thus centrical at the eyeglass and excentrical at the object-glass as far as the rays actually useful are concerned.

The field of view can be calculated as in the case of the Astronomical Telescope.

The lowest point of the image $p q$ that is seen by a full pencil is the point which is formed by a pencil whose highest ray passes through the top of the object-glass, and consequently the distance of this point from the axis and the angular magnitude of the field of view can be obtained by similar triangles, just as in Art. 89.

If y_{0}, y_{e} are the radii of the apertures of the object and eye-glass respectively, and f_{0}, f_{e} the focal lengths of these lenses; with the assumptions at the end of the last Article, we have, by similar triangles,

$$
\begin{aligned}
& \frac{y_{e}+p q}{f_{e}}=\frac{y_{0}+p q}{f_{0}} ; \\
& \therefore \quad p q=\frac{f_{e} y_{0}-f_{0} y_{e}}{f_{0}-f_{e}},
\end{aligned}
$$

and the angular radius of the field of view

$$
=\frac{p q}{f_{0}}=\frac{f_{e} y_{0}-f_{0} y_{e}}{f_{0}\left(f_{0}-f_{e}\right)} .
$$

In order to ensure a large field of view the aperture of the object-glass must therefore be considerable.

The magnifying power of Galileo's Telescope will also easily be found to be expressed by the ratio of the focal
length of the object-glass to the focal length of the eyeglass.

The chief advantage of Galileo's Telescope is, that it gives an erect image with the use of only two lenses.

It cannot be used for measurements, as the image formed by the object-glass is a virtual one.

The ordinary Opera-glass consists of a pair of Galilean Telescopes placed with their axes parallel.
100. We have now to consider the second class of Telescopes, in which the image of the distant object is formed by a reflecting spherical surface.

The different kinds of reflecting telescopes chiefly differ in the arrangements made for viewing and magnifying this image.

We shall first describe, as the simplest form, and the one which has been used for the largest reflecting telescopes, Herschel's construction.
101. Herschel's Telescope consists essentially of a large concave mirror.

Let A be the centre of the face of the mirror, O the centre of the spherical surface of which it is formed.

Let $P Q$ be any distant object.
The rays from any point P of this object will fall upon the mirror, and be approximately reflected to some point p, in PO produced. This assumption is equivalent to taking the secondary focus of the reflected pencil as the point of convergence of the whole pencil, an assumption which will not be far wrong if, as is always the case in practice, the obliquity of the pencil from P be very small.

Thus a real inverted image of $P Q$ will be formed at $p q$.
The rays which have converged to form the points of this image are then received on a convex lens of short focal length, by which a larger virtual image of $p q$ is formed, as in the Astronomical Telescope.

This lens is placed towards one side of the tube, at one end of which the large mirror A is fixed, and with its axis slightly inclined to that of the large mirror. The light from the point P is thus not intercepted to any great extent by the observer's head, but the eye is only able to perceive parts of the image which have been formed by slightly oblique pencils.

The reader who has carefully studied and understood the investigation of the field of view and magnifying power in the case of the Astronomical Telescope will have no difficulty in investigating similar formulæ for Herschel's Telescope.
102. A slightly different construction more suitable for small telescopes is known as Newton's Telescope. In this

telescope the rays from any point P are reflected by the large mirror so as to converge to a point p.

An inverted image of the object $P Q$ would thus be formed at $p q$ just as in the last Article.

A plane mirror is placed with its plane inclined at an angle of 45° to the axis of the object mirror, so as to intercept the pencils before they converge to points of $p q$.

By this mirror the pencil converging to p will be made to converge to p^{\prime}, a point at the same distance in front of the plane mirror as p is behind it.

A real image $p^{\prime} q^{\prime}$ of $P Q$ is thus formed, which can be viewed by an eye-lens or eye-piece placed in the side of the tube which carries the large mirror, the axis of the eye-piece being at right angles to that of the large mirror.

The adjustment for distinct vision can be made by attaching the small plane mirror to the eye-piece and giving them both a motion parallel to the axis of the object mirror.

By moving them towards A the plane mirror is removed farther from $p q$, and $p^{\prime} q^{\prime}$ is thus brought nearer to the eyelens. By moving them in the opposite direction, $p^{\prime} q^{\prime}$ is removed farther from the eye-lens.

The magnifying power and field of view can be investigated by a similar process to that given for the Astronomical Telescope.
103. Two other forms of reflecting telescope remain to be described, Gregory's and Cassegrain's.

In each of these the large mirror is pierced with a circular aperture in its centre, to receive the eye-piece.

The pencil of rays from any point P of a distant object falls upon the object-mirror and is reflected to converge to a point p; thus an image $p q$ of any object $P Q$ is formed.

Fig. (1).

In Gregory's Telescope the pencl after converging to p is received on a small concave mirror whose axis coincides with that of the large mirror, and is reflected so as to converge to a point p^{\prime} in $p 0^{\prime}$ produced, 0^{\prime} being the centre of the spherical surface of this small mirror. Thus a real erect image $p^{\prime} q^{\prime}$ of $P Q$ is formed, and the position of the small mirror is so
chosen that this image can be distinctly viewed by the eyepiece E, which is capable of a slight adjustment for this purpose.

In Cassegrain's Telescope the pencil of rays from P is caught before it converges to p by a small convex mirror, by which it is made to converge to a point p^{\prime} in $O^{\prime} p$ produced, O^{\prime} being the centre of the spherical surface of this small mirror.

Fig. (2).

Thus an inverted real image of the object $P Q$ is formed at $p^{\prime} q^{\prime}$, and the small mirror is so placed that this image can be conveniently viewed by the eye-piece.

The investigation of the field of view in these telescopes is too complicated to find a place in this treatise. We will give an approximate investigation of the magnifying power in Gregory's Telescope.

Let 7 be the focal length of the large mirror, f_{m} that of the small mirror, f_{e} that of the eye-piece.

Then approximately with the usual conventions, in Fig.(1)

$$
O q=F, \quad E q^{\prime}=f_{\varepsilon}
$$

Also the distance of the image $p^{\prime} q^{\prime}$ from the small mirror is in practice very large, compared with the focal length of the small mirror. Hence approximately we may take $O^{\prime} q=f_{m}$; whence we get also $O^{\prime} q^{\prime}=q q^{\prime}-O^{\prime} q=F-f_{m}$ nearly.

Now the magnifying power is evidently measured by the fraction

$$
\frac{\angle p^{\prime} E q^{\prime}}{\angle P O Q}=\frac{\angle p^{\prime} E^{\prime} q^{\prime}}{\angle p O q}=\frac{\frac{p^{\prime} q^{\prime}}{E q^{\prime}}}{\frac{p q}{O q}} \text { approximately, }
$$

$$
\begin{aligned}
\therefore \text { magnifying power }=\frac{p^{\prime} q^{\prime}}{p q} \cdot \frac{O q}{E q^{\prime}} & =\frac{O^{\prime} q^{\prime}}{O^{\prime} q} \cdot \frac{O q}{E q^{\prime}} \\
& =\frac{\left(F^{\prime}-f_{m}\right) \cdot F}{f_{m} \cdot f_{e}} \\
& =\frac{F^{2}}{f_{m} f_{e}} \text { nearly }
\end{aligned}
$$

since f_{m} is small compared with F.
Gregory's construction is frequently used for small reflecting telescopes, and the fact of its giving an erect image is an advantage in viewing terrestrial objects. For large telescopes, the difficulty of supporting the small mirror accurately in its right position without being liable to tremors diminishes its value. For such telescopes the form adopted by Herschel is the best.
104. It is sometimes convenient to be able to turn through a right angle the direction in which the eye sees objects through a telescope or microscope. This can be effected by placing in front of the eye-piece of the telescope or microscope an instrument called the Camera Lucida.

This consists of a glass prism whose section perpendicular to its axis is a quadrilateral figure $A B C D$, one angle of which A is a right angle, the angle C opposite A being an obtuse angle of such a magnitude that a ray of light which enters the prism at right angles to $A B$ shall after internal reflection at $B C$ and $C D$ emerge in a direction at right angles to $A D$.

The deviation of this ray being thus a right angle, the acute angle between $C B$ and $D C$ must be half a right angle or $B C D$ must be 135°.

The angles at B and D are equal and therefore each equal to $67 \frac{1}{2}$ degrees.

With any ordinary kind of glass it will be found that rays incident on $B C$ perpendicular to $A B$ are incident at an angle greater than the critical angle and are totally internally reflected. The same will happen at $C D$ and thus no light will be lost.

This will also be true for rays slightly inclined to this direction. If therefore a pencil of light emanating from a point P be incident on the lower part of $A B$, with its axis only inclined at a small angle to the normal to $A B$, this pencil will emerge from $A D$ with its axis at right angles to its original direction and the eye will see an image of the point P at some point P^{\prime} in this new direction.

Thus, for instance, if the tube of a microscope be placed horizontally, and the camera lucida be placed close in front of its eye-piece, the pencils of light diverging from different points of the virtual image formed by the eye-piece will, after passing through the camera lucida, give to the eye the impression of a horizontal image of the object 'viewed through the microscope.

The eye-piece can be adjusted so that this horizontal image shall appear at any required distance, and if a piece of paper be placed below the eye at this same distance and the eye be placed with its pupil only half over the edge of the camera, the paper and the image will be distinctly visible together and will appear to coincide.

A drawing of the image can thus be accurately made.
It can be shewn by calculating the position of the foci after each refraction and reflection that, if the size of the camera be small compared with the distances of P or P^{\prime} from it, the point P^{\prime} is at the same distance from the eye as P :

EXAMPLES. CHAPTER VIII.

1. The focal lengths of the object-glass and eye-glass of an astronomical telescope are 15 inches and 5 inches respectively, and their radii 3 inches and 2 inches respectively. Find the radius of the stop which will cut off the ragged edge.
2. The diameters of the eye-glass and object-glass of an astronomical telescope are 1 inch and 6 inches respectively, and their focal lengths 1 inch and 20 inches respectively. The axis is pointed to a rod of infinite length at a distance of 150 feet. Find how much of the rod can be seen in the telescope.
3. Show that the magnifying power of an astronomical telescope furnished with a Ramsden's eye-piece is $\frac{4 F}{3 f}$; if F be the focal length of the object-glass, and f that of either lens of the eye-piece.
4. If the object-glass of an astronomical telescope be considered as a luminous object, the eye-piece will form a real image of it . Show that the magnifying power of the telescope is equal to the ratio of the diameter of the objectglass to the diameter of this real image.
5. If the focus of the eye-glass in a Gregory's telescope be at the centre of the aperture of the large mirror, and d be the distance from the large mirror of the image of the small mirror formed by it; show that the magnifying power of the telescope may be estimated as $\frac{d}{f}$ where f is the focal length of the eye-glass.
6. A person uses the same lens for the field-glass of a Ramsden's and a Huyghens' eye-piece; prove that the magnifying power of his astrnnomical telescope when fitted up with the latter is half as great again as when fitted up with the former.
7. The axis of an astronomical telescope is directed to the sun so that a real image of the sun is formed by refraction through the object-glass and eye-glass on a screen held perpendicularly to the axis of the telescope. If a be the diameter of this image, α the apparent angular diameter of the sun, d the distance of the screen from the eye-piece,
and m the magnifying power, show that $m=\frac{\alpha \cot \frac{\alpha}{2}}{2 d}$.
8. A Galileo's telescope is adjusted so that a pencil from an object 289 feet distant emerges as a pencil of parallel rays; the focal length of the object-glass is one foot, and of the eye-glass one inch: show that if the axis is directed towards the sun, and a piece of paper be held 23 inches from the eye-glass, an image of the sun will be formed on the piece of paper. The sun's apparent angular diameter being $\cot ^{-1} 120$, what is the size of this image, and is it erect or inverted?
9. The focal length of the object-glass of an astronomical telescope is 20 feet and its aperture 15 inches. The eye-glass has a focal length of one inch and an aperture of half-aninch. What proportion of the moon's disc can be seen at once in the telescope, the angular apparent diameter of the moon being half a degree ?
10. Calculate an expression for the field of view of an astronomical telescope fitted with Ramsden's eye-piece, the apertures of the object-glass and field-lens being given. Find what must be the least size of the eye-lens in order that no light may be lost.
11. An eye can see most distinctly at a distance of a feet. The focal lengths of the object and eye-glasses of an astronomical telescope being f_{0}, f_{ε} feet respectively, and their semi-apertures y_{0} and y_{e} inches respectively, calculate an expression for the field of view and magnifying power when the telescope is adjusted for distinct vision.
12. The focal length of the object-glass of an astronomical telescope is 40 inches, and the focal lengths of four lenses, forming an erecting eye-piece, are respectively $\frac{3}{2}, \frac{1}{6}, \frac{3}{8}$
and $\frac{3}{2}$ inches, beginning with the field-lens. The intervals between the first and second, and between the second and third, being one inch and half-an-inch respectively; find the position of the eye-lens and the magnifying power, when the instrument is in adjustment for eyes which can see with parallel rays.
13. An astronomical telescope is fitted with a Ramsden's eye-piece, and is adjusted for distinct vision of distant objects. A convex lens, whose focal length is f_{1}, is placed in contact with the object-glass, whose focal length is F. Show that the instrument will remain in adjustment if a concave lens be placed in contact with the field-glass, the focal length of the concave lens being $f\left\{1+\frac{f}{F^{12}}\left(F+f_{1}\right)\right\}$, where $4 f$ is the focal length of the field-glass.

Find the magnifying power in this latter case.
14. The lenses of a common astronomical telescope, whose magnifying power is 16 , and length from object-glass to eye-glass $8 \frac{1}{2}$ inches, are arranged as a microscope to view an object placed $\frac{5}{8}$ of an inch from the object-glass; find the magnifying power, the least distance of distinct vision being taken to be 8 inches.
15. A Galileo's and an astronomical telescope have object-glasses of equal focal length and aperture. Their eyeglasses have equal focal lengths and they have the same field of view for complete pencils; prove that the diameter of the stop in the astronomical telescope should be half the difference of the breadths of the eye-glasses.
16. An astronomical telescope is adjusted to view an object at an infinite distance and is fitted with a Huyghens' eye-piece ; show that its length is $F+\frac{1}{2} f$, where F, f are the focal lengths of the object-glass and eye-glass.
17. Prove that when a ray of light is incident on a Huyghens' eye-piece parallel to the axis, it suffers an equal deviation at each lens.

Show that this will be the case with any eye-piece composed of two convex lenses, provided that the distance between the lenses is equal to the difference of their focal lengths.
18. An erector consisting of two double convex glasses each of focal length f, fixed at a distance $2 a$ from one another, is inserted between the object-glass of a telescope or microscope and the first image so as not to alter its position ; show that the distances of its two glasses from the said image are $a \sqrt{\frac{a+f}{a-f}} \pm a$. Does this form of erector alter the magnifying power?
19. When an astronomical telescope fitted with a Ramsden's eye-piece is directed to an infinitely distant object, and is adjusted for an eye seeing distinctly at a distance Δ, its magnifying power will be $\frac{F}{f}+\frac{F}{3 \Delta}$, where F, f are the focal lengths of the object-glass and of the lens equivalent to the eye-piece.

CHAPTER IX.

ON DISPERSION AND ACHROMATIC COMBINATIONS.
105. It has been hitherto assumed that, when a ray of light is refracted out of one medium into another, there is only one refracted ray corresponding to each incident ray.

It was however discovered by Newton that this is not the case with the light of the sun, but that when a ray of sunlight is refracted from air into glass it is separated into a large number of different refracted rays. Newton in effect proved that sunlight is really composed of an infinite number of rays of light of different colours, varying gradually from red through orange, yellow, green, blue, indigo to violet, and of correspondingly different refrangibilities, the index of refraction being least for the red light and increasing by imperceptible degrees, till it becomes greatest for the violet light.
106. Newton's original experiment was conducted somewhat in the following manner:
A is a small hole in the shutter of a darkened room, through which the sunlight comes into the room. From each point of the sun's disc a small pencil will come whose base is the opening A. If A be very small, so that this pencil may be considered to be a single ray, the assemblage of these pencils outside the room will be approximately a conical pencil whose vertex is A, and whose base is the disc of the sun. This cone produced will form a pencil of light with the same solid angle, within the room; and, if it falls
A. G. O.
on a screen placed perpendicularly in its path, will form a round patch of white light which is in fact a rough image of the sun.

A prism of glass is interposed so as to receive this pencil near to its edge; and it is then found that if the light be received on a screen, there is formed, not a round patch of white light, but an elongated strip of coloured light, the longer diameter of which is perpendicular to the edge of the prism, and the colours of which proceed from red to violet, the red being the least deviated, and the violet the most.

If the prism be turned about its edge a position can easily be found in which the deviation of the light in passing through the prism is a minimum. This will be the case when the coloured patch, which is called a spectrum, assumes the position nearest to that occupied by the white patch when the prism was away.

Now, we know, that if the refractive index of a ray be given, the minimum deviation through a prism of a known angle is given. Hence it is not unreasonable to infer that the white light consists of a number of rays of different colours and correspondingly different refrangibilities.
107. Some other experiments were however considered necessary by Newton before he accepted this view. For instance, placing a second prism with its edge at right angles to that of the first, so as to catch the light after refraction
through the first, he found that the spectrum formed on the screen was no broader than before but was shifted sideways, the amount of displacement varying for the different colours being greatest for the violet and least for the red rays.

The following is perhaps the most simple and satisfactory experiment.

The light, after passing through the prism, is received on a screen, with a narrow slit M in it parallel to the edge of

the prism ; all the light therefore, except the small portion which is incident on the slit, is stopped by the screen. At a short distance behind this, another screen, with a slit N in it, is placed ; and behind this is placed a second prism with its edge parallel to that of the first.

We are thus sure that no light can be incident to the second prism, except in the particular direction $M N$.

By turning the first prism round its edge, we can make all parts of the original spectrum pass in succession over M, and this causes the red, orange, \&c. light in succession to fall on to the second prism, all at the same angle of incidence.

On performing this experiment, it will be found that when the red light and violet light are thus in succession incident at the same angle on the second prism, the red light is not so much bent as the orange, the orange not so much as the green, and so on, the violet being most refracted.

From these and similar experiments it is concluded that white sunlight consists of an infinite number of kinds of light of different colours and refrangibilities, the red being least refracted and the violet most refracted.

It is found that the same is true of the light emitted by a candle, a burning coal, or any glowing heated body in a solid or fluid state.
108. It remains to show how to separate completely the different kinds of light of which white light is composed. This, it will be observed, is not effected in Newton's fundamental experiment, because each kind of light produces a circular spot of light on the screen, and the circles corresponding to different colours will overlap each other.

Let A, as before, be a small hole or, better still, a narrow slit parallel to the edge of the prism through which light comes from the sun or other luminous body.

When the small pencil from A falls on the prism near its edge, if the prism be placed in such a position that the

deviation is a minimum, we know that the rays of the pencil, after refraction through the prism, approximately diverge from a point at the same distance from B as the original point of light A (Art. 65, end).

This will be true for light of each kind of refrangibility, but the points will be different for each kind of light. Thus a series of virtual images of A will be formed all nearly at the same distance from B as A is, R the red image being highest, and V the violet image being lowest.

If an eye be placed close to the edge of the prism so as to receive the light after passing through the prism, it will see this series of virtual images, and if the hole or slit A be very small, the eye will thus see a pure spectrum, that is a spectrum in which the colours are unmixed.
109. Instead of placing the eye close to the prism, it is better to place an astronomical telescope so as to receive the rays after refraction through the prism.

The object-glass of this telescope will receive the pencils proceeding from various points of the virtual spectrum $V R$, and will form a real inverted image of $V R$, which can be viewed by the eye-piece, and measurements of the lengths of its different parts made by the method explained in Art. 94.

Instead of using the eye-piece, a screen may be placed in the position of the real image formed by the object-glass. A pure spectrum will thus be formed on this screen which can be inspected at pleasure.

If the pencil be refracted through a number of prisms, the dispersion, as it is called, of the pencils of different colours is increased by each successive prism, and a much longer pure spectrum is formed than can be obtained with a single prism.
110. An apparatus specially adapted for forming and viewing the pure spectrum of the light from any source is called a spectroscope.

It consists essentially of three parts. First, a tube closed at one end with the exception of a fine slit, through which the light is admitted; secondly, of a prism or series of prisms so placed that the light which has come through the slit and down the tube shall be refracted through them all at an angle of minimum deviation ; and, thirdly, of a telescope

134 ON DISPERSION AND ACHROMATIC COMBINATIONS.

placed so as to receive the light after refraction through these prisms.

The whole is usually mounted on a stand and is provided with the means of measuring the deviation of any particular ray.

In order to obtain great length of spectrum it is essential to use a large number of prisms. It is clear however that the diverging pencil of light of any particular colour, which comes originally from the slit, would in this case have attained a considerable breadth before its incidence on the last prism, and probably a considerable portion of the light would be finally lost as well as indistinctness produced in the final image by reason of the very different lengths of glass traversed by different portions of the same pencil. To obviate this, a lens is placed in the tube which carries the slit, so that the slit is in its principal focus. The diverging pencil emanating from each point of the slit is thus reduced to a pencil of parallel rays, the width of which for each colour will not increase, as it passes through successive prisms.

This construction is equivalent to removing the virtual images $V \ldots R$ of the slit, in the last article, to an infinite distance.

Spectroscopes are also constructed, in which either by total internal reflection, or by deviation in opposite directions through prisms with different dispersive powers (Arts. 114, 115), there is considerable dispersion without any deviation. These are known as direct vision spectroscopes, and are very convenient for many observations.
111. The angle between the axes of the pencils which converge to v and r respectively can be easily deduced in terms of the angle of incidence of the axis of the incident pencil and the refractive indices for red and violet rays.

Let ϕ be the angle of incidence, μ the index of refraction for mean rays. Let $\phi^{\prime}, \psi^{\prime}, \psi$ have their usual meaning for mean rays, and let $\phi_{v}^{\prime}, \psi_{v}^{\prime}, \psi_{v}$ denote the same quantities for the violet rays, $\phi_{r}^{\prime}, \psi_{r}^{\prime}, \psi_{r}$, for red rays. Let μ_{v}, μ_{r} be the refractive indices, and D_{v}, D_{r} the deviations for these rays respectively.

Then by Art. 60,

$$
\begin{aligned}
D_{v} & =\phi+\psi_{v}-i, \\
D_{r} & =\phi+\psi_{r}-i \\
\therefore D_{v}-D_{r} & =\psi_{v}-\psi_{r}
\end{aligned}
$$

But $\sin \psi_{v}=\mu_{v} \sin \psi^{\prime}{ }_{v}=\mu_{v} \sin \left(i-\phi_{v}^{\prime}\right)$

$$
\begin{aligned}
& =\mu_{v} \sin i \cdot \cos \phi_{v}^{\prime}-\mu_{v} \sin \phi_{v}^{\prime} \cos i \\
& =\mu_{v} \cos \phi_{v}^{\prime} \cdot \sin i-\sin \phi \cdot \cos i .
\end{aligned}
$$

Similarly $\quad \sin \psi_{r}=\mu_{r} \cos \phi_{r}^{\prime} . \sin i-\sin \phi \cdot \cos i ;$
$\therefore \sin \psi_{r}-\sin \psi_{r} \quad=\left(\mu_{v} \cos \phi_{v}^{\prime}-\mu_{r} \cos \phi_{r}^{\prime}\right) \sin i$.
But

$$
\begin{aligned}
\mu_{v} \sin \phi_{v}^{\prime} & =\sin \phi \\
\therefore \mu_{v} \cos \phi_{v}^{\prime} & =\sqrt{\mu_{v}^{2}-\sin ^{2} \phi}
\end{aligned}
$$

Similarly

$$
\mu_{r} \cos \phi_{r}^{\prime}=\sqrt{\mu_{r}^{2}-\sin ^{2} \phi}
$$

$\therefore 2 \sin \frac{\psi_{v}-\psi_{r}}{2} \cdot \cos \frac{\psi_{v}+\psi_{r}}{2}$

$$
=\sin i\left\{\sqrt{\mu_{v}^{2}-\sin ^{2} \phi}-\sqrt{\mu_{r}^{2}-\sin ^{2} \phi}\right\},
$$

$$
=\frac{\sin i\left(\mu_{v}^{2}-\mu_{r}^{2}\right)}{\sqrt{\mu_{v}^{2}-\sin ^{2} \phi}+\sqrt{\mu_{r}^{2}-\sin ^{2} \underline{\phi}}}
$$

Now

$$
\mu_{v}^{2}-\mu_{r}^{2}=\left(\mu_{v}-\mu_{r}\right)\left(\mu_{v}+\mu_{r}\right)=2 \mu\left(\mu_{v}-\mu_{r}\right) .
$$

Also

$$
\psi_{v}+\psi_{r}=2 \psi \text { nearly, }
$$

and $\sqrt{\mu_{v}^{2}-\sin ^{2} \phi}+\sqrt{\mu_{r}^{2}-\sin ^{2} \phi}=2 \sqrt{\mu^{2}-\sin ^{2} \phi}$ nearly.
Hence we get

$$
\begin{array}{r}
\sin \frac{\psi_{v}-\psi_{r}}{2}=\sin \frac{D_{v}-D_{r}}{2}=\frac{\mu \sin i\left(\mu_{v}-\mu_{r}\right)}{2 \sqrt{\mu^{2}-\sin ^{2} \phi} \cdot \cos \psi} \\
=\frac{\left(\mu_{v}-\mu_{r}\right) \sin i}{2 \cos \phi^{\prime} \cdot \cos \psi},
\end{array}
$$

which gives us the value of $D_{v}-D_{r}$, that is the angle subtended by $r v$, in Art. 109, at the point 0.

It is clear that the linear distance $r v$ will approximately

$$
=\frac{f\left(\mu_{v}-\mu_{r}\right) \sin i}{\cos \phi^{\prime} \cdot \cos \psi},
$$

if f be the focal length of the lens 0 .
112. When a pure spectrum is obtained from the sun's light, it is found that it is not a continuous band of light, but that it has a very large number of interruptions, or places where the light does not exist. If the spectrum be formed from a slit, these interruptions appear as fine lines parallel to the edge of the prism, and consequently perpendicular to the length of the spectrum.

The number of these lines that can be seen increases with the number of the prisms, the purity of the material of which they are composed, and the fineness of the slit through which light is admitted. A very large number of them have been observed and their relative positions very accurately determined by measurement.

It is found that the same lines always occur in the same order, whatever may be the size or nature of the prism, and they are thus known as the fixed lines of the solar spectrum.

Some of the more important and well marked of these lines are taken as points of reference for the spectrum and denoted by the letters $A, B, C, D, E, F, \ldots \ldots \ldots$, and the position of any ray is determined by its position relative to these fixed lines.

For representations of the solar spectrum the reader is referred to those in Roscoe's Spectrum Analysis, and to other similar treatises.
113. It is found that the solar light reflected by the planets or the moon gives the same spectrum as the direct solar light, while that from the fixed stars presents different fixed lines from the solar spectrum.

Thus it appears that the solar spectrum is something essentially belonging to the sun itself.

The light from any glowing hot body, solid or fluid, with only a single known and perhaps problematical exception in
the earth Erbia, is found to give a spectrum without any interruptions or fixed lines.

On the other hand, when by any means a body in a sufficiently attenuated gaseous state is rendered luminous, as by enclosing it in a glass tube, and passing the spark of an induction coil through it, the spectrum formed is very different, and consists of a number of isolated bright lines.

It is farther found that, when light from a highly heated incandescent body is made to pass through any gas of lower temperature than the source before falling on the spectroscope, the spectrum formed is no longer continuous, but has interruptions at precisely those points where bright lines would have been formed by the glowing gas itself if rendered sufficiently luminous.

We thus have a physical explanation of the fixed lines in the solar spectrum.

The body of the sun is supposed to be in a very hot semifluid or fluid state. This body would of itself give a continuous spectrum. It is supposed that this central body is surrounded by a cooler and therefore absorbent gaseous atmosphere, which contains portions of the elements existing in the sun's body which have been vapourised by the great heat.

The passage of the sun's light through this atmosphere produces the fixed lines in the spectrum.

By comparing the fixed lines in the sun's spectrum with the bright lines given by the vapours of various terrestrial substances, it has been inferred that several of these, as hydrogen, iron, sodium, \&c., exist in a state of vapour in the sun's atmosphere, and that therefore probably those of them which can there assume a solid state exist in a solid or fluid state in the body of the sun.

Similar inferences have been made about the constitution of various orders and classes of the fixed stars.

The spectra given by some of the nebulæ consist of a small number of isolated bright lines. It is thence inferred that these nebulæ are really masses of luminous gaseous matter, in which nitrogen and hydrogen are the chemical elements most frequently observed.
114. It is clear from the last few Articles that in all cases where refraction takes place we shall have corresponding to each incident ray, not one, but an infinite number of refracted rays.

For instance, the formula,

$$
\frac{1}{v}-\frac{1}{u}=(\mu-1)\left(\frac{1}{r}-\frac{1}{s}\right),
$$

which gives the position of the focus of a pencil after direct refraction through a thin lens, will give a different value of v for each different value of μ. Hence corresponding to one original point of light there will be a series of points as images of it, of different colours, arranged along the axis of the lens.

The object-glass of an Astronomical Telescope will thus form a series of images of the original object, one behind the other and of different colours.

The question arises, is it possible to find a remedy for this and other effects which may arise from the fact of light being decomposed into its elements by refraction? Newton supposed that there was no remedy, and was hence led to turn his attention to the construction of reflecting telescopes. Later discoveries have showed that a remedy can be partially, if not perfectly, applied.
115. If a pencil of white light be passed through a prism, it is deviated and also separated into a number of different pencils of different colours. If a second prism of the same material and size be interposed so as to deviate the pencil equally in the opposite direction, it is found that the dispersion is also corrected, and the pencils of different colours all proceed in the same direction as the original pencil; and in fact reproduce white light, without any deviation from the original direction.

If the second prism be of a different material, and be of such a refracting angle as to produce the same deviation of the mean ray, as the former prism, but in an opposite direction, it is found that the dispersion is not completely corrected.

Thus in prisms of different materials, which give the same deviation, the dispersion is not always the same.

On the other hand, since in prisms of the same material the dispersion is found to increase with the deviation, it follows that it will be possible to take two prisms of different materials which shall give the same dispersion, with different deviations.

If then a pair of such prisms be placed so as to deviate a pencil successively in opposite directions, the dispersions will be equal and opposite, that is, on the whole there will be no dispersion, while the deviations will not be equal, or, there will be deviation without dispersion.

The above remarks are strictly true only if we consider two particular rays of the spectrum.

It is found, for instance, that if A, B, C represent three particular rays of the spectrum, the ratio of the dispersion of A and B to that of A and C is different for different media. Thus if with two prisms of different media we give A and C equal dispersions in opposite directions, the dispersions of A and B in the two prisms will not usually be equal and opposite.

Achromatic combinations will thus in general only exactly unite two rays, and will be only imperfectly achromatic.

The fact on which this imperfection depends is called the irrationality of dispersion.
116. Before proceeding to apply these principles to the investigation of Achromatic combinations of lenses we must define the dispersive power of a medium.

The dispersive power of a medium may be defined generally as the ratio which the difference of the deviations of any two rays at opposite ends of the spectrum bears to the deviation produced in a ray somewhere in the middle of the spectrum, which we may call the mean ray, when a ray of white light passes throagh a prism formed out of this medium.

This ratio varies with the angle of the prism. For the sake of precision we will therefore define the dispersive power of a medium as the limiting value of the above ratio
when the angle of the prism is indefinitely diminished. This will not differ much from its value for moderate angles of the prism.

Let μ be the refractive index of the medium for the mean ray, μ_{v}, μ_{r} its refractive indices for two rays at the violet and red ends of the spectrum respectively. Let D, D_{v}, D_{r} be the deviations of these rays.

Then the dispersive power of the medium is the limit of the ratio $\frac{D_{v}-D_{r}}{D}$ when the angle of the prism is indefinitely diminished.

But since we are finally to assume the angle of the prism indefinitely small, we may use the last formula in Art. 60, and we have

$$
\begin{aligned}
D & =(\mu-1) i, \\
D_{v} & =\left(\mu_{v}-1\right) i \\
D_{r} & =\left(\mu_{r}-1\right) i .
\end{aligned}
$$

Hence the dispersive power

$$
=\text { limit of } \frac{D_{v}-D_{r}}{D}=\frac{\mu_{v}-\mu_{r}}{\mu-1} .
$$

This fraction is usually denoted by the symbol ϖ.
117. If two thin lenses be placed in contact with a common axis, and a pencil of light be directly refracted through the combination, the distances u and v of the point of light and its image respectively from the common centre of the lenses are connected by the formula

$$
\frac{1}{v}-\frac{1}{u}=\frac{1}{f_{1}}+\frac{1}{f_{2}}(\text { Art. 75) }
$$

f_{1}, f_{2} being the focal lengths of the lenses.
Now as above explained (Art. 114) f_{1} and f_{2} will differ for the blue and red rays, but if we can arrange the focal lengths so that $\frac{1}{f_{1}}+\frac{1}{f_{2}}$ shall have the same value for the two rays we select, the value of v will be the same for these rays,
and the corresponding images of the original point of light will coincide.

The value of $\frac{1}{f_{1}}$ for the red rays will be

$$
\left(\mu_{r}-1\right)\left(\frac{1}{r}-\frac{1}{s}\right),
$$

and for the ray at the other end of the spectrum it will be

$$
\left(\mu_{v}-1\right)\left(\frac{1}{r}-\frac{1}{s}\right),
$$

The difference between these is

$$
\begin{gathered}
\left(\mu_{v}-\mu_{r}\right)\left(\frac{1}{r}-\frac{1}{s}\right) \\
=\frac{\mu_{v}-\mu_{r}}{\mu-1} \times(\mu-1)\left(\frac{1}{r}-\frac{1}{s}\right)=\frac{\sigma_{1}}{f_{1}},
\end{gathered}
$$

if σ_{1} be the dispersive power of the medium of which this lens is composed.

Similarly, if ω_{2} be the dispersive power of the second medium, the difference of the values of $\frac{1}{f_{2}}$ for the red and blue rays, will be $\frac{\omega_{2}}{f_{2}}$.

Hence in order that the two images may coincide, we must have $\frac{\omega_{1}}{f_{1}}+\frac{\omega_{2}}{f_{2}}=0$.

This, therefore, is the condition that two lenses placed in contact with a common axis may form an Achromatic combination. It is clear that f_{1} and f_{2} must have opposite signs; one lens must therefore be convex and the other concave.

The object-glass of an achromatic Astronomical Telescope is formed of two lenses, one concave and the other convex, placed in contact, the focal length of the convex being the shorter, so that the combination may be convex on the whole, and by the above formula the concave lens must have the greater dispersive power.

In consequence of the irrationality of dispersion such a combination will not unite all the images, but it can be made to unite any two of the most important complementary colours, and will in so doing bring the others nearer to each other.
118. The refraction through the eye-piece of an astronomical telescope being excentrical, the axes of the pencils undergo deviation, and this deviation will be different for the rays of different colours of which the pencil is composed.

To form an achromatic eye-piece it is necessary to arrange two lenses so that the deviations of two rays belonging to the two ends of the spectrum in passing through the combination shall be equal.

It will nearly ensure this if the value of the focal length of the equivalent lens investigated in Art. 76 is the same for the two rays. The investigat:, il tin that Article, it may be noticed, depends on the dev devia f an excentrical ray incident parallel to the axis.

spectrum

In practice two convex lens a ployed to nployed, and we will therefore take the second fcrrf minim at article

$$
\frac{1}{h^{\prime}}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{\stackrel{\rightharpoonup}{f_{1}}}{f_{1} f_{2}}
$$

f_{1}, f_{2} being the numerical values of the focal lengths of the lenses.

As in the last article the differences in the values of $\frac{1}{f_{1}}$ and $\frac{1}{f_{2}}$ for rays at the two ends of the spectrum are $\frac{\varpi_{1}}{f_{1}}$ and $\frac{\varpi_{2}}{f_{2}}$ respectively.

Hence the whole alteration in the value of $\frac{1}{F}$ is

$$
\frac{\varpi_{1}}{f_{1}}+\frac{\varpi_{2}}{f_{2}}-a \frac{\left(1+\varpi_{1}\right)\left(1+\varpi_{2}\right)-1}{f_{1} f_{2}},
$$

and this must vanish, if the combination is achromatic.

If the lenses be of the same material $\omega_{2}=\omega_{1}$, and the condition for achromatism becomes

$$
\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{a(2+\varpi)}{f_{1} f_{2}}=0,
$$

or since ω is a small quantity, approximately we have

$$
\begin{aligned}
& \frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{2 a}{f_{1} f_{2}}=0, \\
& \therefore f_{1}+f_{2}=2 a .
\end{aligned}
$$

This condition is satisfied by Huyghens' eye-piece, since in that combination the focal lengths are f and $3 f$ respectively, and a is $2 f$.

Ramsden's eye-piece is not achromatic, as it does not satisfy the above condition.

The above investigation only applies strictly to an excentrical ray incident ! ! lel to axis, but it will approximately hold for al' fectry hich are not very oblique. The condition of achr. of 1.541^{1} nact, varies with the obliquity.
119. It is difference fdd a proposition on the condition of achromatism 0 .

If the angles of the prisms be small, the condition is very simple and easily found.

Let i, i^{\prime} be the angles of the prisms,
μ, μ^{\prime} their refractive indices for the mean ray,
D, D^{\prime} the deviations of the mean ray in passing through them,
ϖ, ϖ^{\prime} their dispersive powers,

$$
\therefore D=(\mu-1) i, \quad D^{\prime}=\left(\mu^{\prime}-1\right) i^{\prime} .
$$

Hence the deviation of the red ray on the whole will equal

$$
\left(\mu_{r}-1\right) i+\left(\mu_{r}^{\prime}-1\right) i^{\prime},
$$

and that of the violet ray on the whole will be

$$
\left(\mu_{v}-1\right) i+\left(\mu_{v}^{\prime}-1\right) i^{\prime} .
$$

But if the combination be achromatic these deviations must be equal ;

$$
\therefore\left(\mu_{r}-\mu_{r}\right) i+\left(\mu_{g}^{\prime}-\mu_{r}^{\prime}\right) i^{\prime}=0,
$$

or

$$
\begin{gathered}
\frac{\mu_{v}-\mu_{r}}{\mu-1} \cdot(\mu-1) i+\frac{\mu_{v}^{\prime}-\mu_{r}^{\prime}}{\mu^{\prime}-1} \cdot\left(\mu^{\prime}-1\right) i^{\prime}=0 ; \\
\therefore w D+w^{\prime} D^{\prime}=0 .
\end{gathered}
$$

The deviations must obviously therefore be in opposite directions and inversely proportional to the dispersive powers of the media.

The formula of Art. 111 will enable the student to deduce a condition of achromatism when a ray of white light passes through two prisms of finite angles.

EXAMPLES. CHAPTER IX.

1. If the prism in Newton's experiment be first placed in the position of minimum deviation ior red rays, and afterwards in the position of mininum devia tion for violet rays, examine in which case the longer pectrum ywill be obtained.
2. Shew that if the prism emloyed to produce a pure spectrum be not in the position oi minimum deviation, a pure spectrum can be still produced on. a screen. Must the screen be placed at the primary or secondary focus of the pencils after refraction through the lens in Art. 109?
3. If the screen be placed in a plane perpendicular to the direction of the light before it passes through the prism in Newton's experiment, prove that for a given position of the edge of the prism the length of the spectrum will be proportional to

$$
\frac{\left(\mu_{r}-\mu_{r}\right) \sin i}{\cos ^{2} D \cos (D+i-\phi) \cos \phi^{\prime}},
$$

μ_{v}, μ_{r} being the refractive indices for the extreme rays, D the mean deviation, i the angle of the prism, and ϕ, ϕ^{\prime} the angles of incidence and refraction at the first surface.
4. The refractive index of a medium for the two rays at the red and violet ends of the spectrum being 1.63 and 1.66 respectively, calculate the dispersive power.
5. Calculate the dispersive power of a medium for which the refractive indices for the same two rays are 1.53 and 1.54 respectively, and find the ratio between the focal lengths of two lenses formed of the media in this and the last example, that the combination may form an achromatic object-glass for an astronomical telescope.
6. Prove that, if f be the focal length of a lens, w its dispersive power, v the distance from the centre of the lens of the point to which a pencil of mean rays is made to converge, the distance between the foci of red and violet rays for the same incident pencil is approximately $\frac{\varpi v^{2}}{f}$.
7. The dispersive power of a medium is 036 . The focal length of a lens formed of it being 3 feet for mean rays, find the distance between the extreme images of the sun formed by the lens.
8. The refractive indices of one medium for three particular rays of the spectrum are $1.628,1.642$ and 1.660 respectively. Those of another medium for the same rays are $1.525,1.533$ and 1.541 respectively. Show that these values exhibit a difference of dispersive power and also the irrationality of dispersion.
9. Prove that if ϕ be the angle of incidence of a ray of white light on a prism of mean refractive index μ and dispersive power $\boldsymbol{\sigma}$, and ϕ_{1} be the angle of emergence of the mean ray from a second prism of mean refractive index μ_{1}, and dispersive power ω_{1}, the combination will be achromatic if

$$
\frac{(\mu-1) w}{\mu} \cdot \tan \phi=\frac{\left(\mu_{1}-1\right) w_{1}}{\mu_{1}} \cdot \tan \phi_{1} ;
$$

the deviation being a minimum at each prism.

CHAPTER X.

MISCELLANEOUS THEOREMS.

120. In the present Chapter we shall collect some miscellaneous Propositions and experimental facts which do not exactly belong to the general train of investigation, but which are usually included in the subject of Geometrical Optics.
121. It is a well-known fact that light requires time for its propagation.

This fact is proved by two astronomical phenomena. It was found, by a comparison of different observations, that the eclipses of Jupiter's Satellites, which are phenomena of great importance in determining the longitude at sea, appeared to happen later or earlier than their calculated times, according as Jupiter was farther from, or nearer to, the earth. By comparing the times of happening of such eclipses when Jupiter was nearest to the earth, with their times when Jupiter was at his greatest distance from the earth, the time taken by light to travel a known distance, the diameter of the earth's orbit, was discovered, and hence the velocity of light was known.

A nearly equal value of the velocity of light was determined by the phenomenon of aberration; a small displacement in the position of a star which was discovered by Bradley to arise from the composition of the velocity of light with that of the earth. For a full account of this phenomenon the reader is referred to any treatise on Astronomy.
122. The velocity of light has also been determined by direct experiment in two ways, one of which we will describe. In this, which is known as Fizeau's method, from the name of its inventor, the light is made to travel from one station to another at a distance of two or three miles from the first and back again; and the time in which this distance is traversed is determined in the following manner.

Fig. (1).

O is the object-glass of a telescope, E its eye-piece. The telescope is placed at the one station, and is pointed to the other station, at which is placed a convex lens whose centre

Fig. (2).

is C and whose axis nearly coincides with that of the first telescope. At the focus of this lens behind it is placed a mirror B whose axis coincides with that of the lens C, and which is best made as a portion of a sphere whose centre is C.

Near the eye-piece of the telescope a small lens F is placed in the side of the tube of the telescope. Outside and in front of this lens, as at A, is placed a candle or
luminous point of some description. The rays from A fall on the lens F and are refracted by it so that they would converge to a point within the tube of the telescope. A piece of plane glass is placed to intercept these rays before they converge, and being placed at an inclination of 45° to the axis of the telescope, reflects the pencil so that its axis after reflection is parallel to that of the telescope. The rays will thus converge to some point, as P, and then diverge and fall upon the object-glass O. The positions of A, F, and H are so chosen that the point P is at a distance from O equal to the focal length of the object-glass. The pencil from P will thus emerge as a pencil of parallel rays, whose direction is parallel to $P O$. The light will proceed to the second station, fall upon the lens C, and be refracted to converge to a point on the mirror B. By this mirror the rays will be reflected back on to the lens C and again emerge as parallel rays in their original direction. They will come back to the lens O and be made to converge to the point P, whence again diverging, some of them will pass through the plane glass H and fall on the eye-piece E, thus giving to the eye vision of a bright point at P.
123. A wheel represented in Fig. (2) having a large number of equal teeth, the space between any two consecutive teeth being just equal to the width of one tooth, and which can rotate about an axis through its centre perpendicular to its plane, is placed with its plane at right angles to the axis of the telescope. It is so placed that as it rotates its teeth shall just pass through the point P and consequently, as the wheel is turned round, the light which comes into the eye will be stopped whenever a tooth is at l, and will pass when an opening is at P.

If the wheel be at rest with an opening at P, the light will pass out and in just as before ; but if we can make the wheel turn with such a velocity that the light which went out through an opening shall just find a tooth in its way when it comes back, the light will be altogether prevented from reaching the eye.

It is clear that if there be n teeth and n openings, the wheel must be turned through an angle $\frac{\pi}{n}$ while the light
travels from one station to the other and back, in order that the light which went out at each point of any opening may be stopped by the corresponding point of the next tooth.

If therefore we can measure the rate of rotation of the wheel when it is moving just so fast as to stop all light in returning, we can determine the velocity of light.

This was done by M. Fizeau, and the result agreed very nearly with that obtained from Astronomical observations, but gave a result very slightly smaller. The velocity determined by this experiment is in fact the velocity of light in air, while that determined from Astronomical phenomena is nearly its velocity in a vacuum.
124. It is clear that if the velocity of the wheel either slightly fall short of, or slightly exceed, this particular velocity, some portion of the light will get through.

Thus, if we begin by making the wheel revolve slowly, only that portion of light which passes out through the last part of an opening will be stopped in returning; but, inasmuch as half the light will be stopped in passing out by the teeth, either the appearance will be that of an intermittent light if the velocity be very slow, or will be a continuous light of less than half the brightness which it had when the wheel was stationary, if the rotation be so rapid that a continuous impression is produced on the retina.

As the wheel rotates more rapidly, more of the light which goes out at any opening will be stopped by the next tooth, and the image will gradually grow fainter, until we reach the exact velocity which causes all light to be stopped.

If the wheel be made to revolve still faster, some of the light which went out at the end of one opening will come back through the beginning of the next opening, and a faint image will reappear, which will continually increase in brightness as the velocity of the wheel is increased, until, when this velocity is just double of that which produced the total eclipse, all the light which passed out through one opening will return through the next.

An image of half the brightness of the original point of light will thus be seen.

Making the wheel revolve still faster, some of the light will begin to be stopped by the second tooth, and the brightness of the image will decrease, until, with a velocity three times that which gives the first eclipse, all the light which passes out at any opening will be stopped in returning by the second tooth, and there will be a second total eclipse.

By proceeding in this way, a series of maxima of brightness, alternating with eclipses, will occur, and by measuring the velocities of rotation of the wheel which produce them, we can obtain a series of independent determinations of the velocity of light.
125. The other method of determining the velocity of light by experiment depends on the use of a revolving mirror. Its special value consists in determining the difference between the velocities of light in air, and in passing through a dense medium, as water, respectively.

A description of this method, known as Foucault's method, can be found in Billet's Traité d'Optique Physique, § 36, or in Parkinson's Optics, Art. 47*. We shall not describe it here.
126. When light from any source falls on any surface, some portion of the light is scattered and makes the surface visible. The proportion of the quantity of light scattered to the whole quantity that is incident, depends very much on the nature of the surface. Thus, when light falls on a smooth piece of glass, scarcely any of it is scattered, while, when the same light falls on a piece of white paper, a very large part of it is scattered, and the paper appears brightly luminous.

This scattered portion may, however, when the nature of the surface remains unchanged, be assumed to be proportional to the whole quantity of light which is incident, and there are one or two propositions in relation to it which are of some interest.
127. We must first give the following definitions:

The illumination at any point of a surface, uniformly illuminated from any source of light, is measured by the quantity of light scattered by a unit of area of the surface.

The illumination at any point of a surface, not uniformly illuminated, is measured by the quantity of light which would be scattered by a unit of area of the surface, supposed illuminated uniformly with the same intensity as the point considered.

Thus, if I_{κ} be the whole quantity of light scattered by a portion of the surface, whose area κ is so small that it may be supposed uniformly illuminated, I will clearly be the illumination of a unit of area equally illuminated with this small element, and will thus be the measure of the illumination at any point of the element of area.
128. If a pencil of light proceed from any point, and we imagine sections of this pencil made at various distances and inclinations, the quantity of light which falls on planes placed so as to coincide with these sections will be the same; and thus the illumination at any point of any one of them will evidently vary inversely as the area of the section, always supposing the pencil so small that the illumination may be supposed uniform over each section.

Let us now suppose O to be the vertex of such a pencil, which we will assume to be in the form of a right cone whose axis is $O P$.

Let I measure the illumination at any point of a section $C D$ of this cone, made by a plane at right angles to $O P$, at a unit of distance from 0 .

Let I^{\prime} represent the illumination at any point of a section $A B$ of this cone, made by a plane which cuts the axis of the
cone at a distance $O P$ from O, and is inclined to $O P$ at an angle $\frac{\pi}{2}-\theta$, so that θ is the angle of incidence of the light on this plane, that is, the angle between $O P$ and the normal to this plane.

- Then, the quantity of light falling on these two sections being the same, we have

$$
I: I^{\prime}:: \text { area of section } A B: \text { area of section } C D .
$$

But if we draw through P a section $E F$ at right angles to $O P$, this section will be to the section $C D$ in the ratio of the squares of their radii, that is, in the ratio of the squares of their distances from O;
\therefore area of section $E F=$ area of section $C D \times O P^{2}$.
Again, since we suppose the solid angle of the cone to be very small, we may suppose the section $E F$ to be the orthogonal projection of $A B$ on the plane $E F$.

Hence, by the theory of projection,

$$
\text { area of } E F=\text { area of } A B \times \cos \theta \text {; }
$$

\therefore area of section $C D=$ area of $A B \times \frac{\cos \theta}{0 P^{2}}$.
But

$$
\frac{I^{\prime}}{I}=\frac{\text { area of section } C D}{\text { area of section } A B} \text {. }
$$

Hence

$$
I^{\prime}=I \cdot \frac{\cos \theta}{O P^{2}}
$$

Hence since, if the source of light and the material of the surface on which the light falls be given, the value of I is a definite quantity, we may say

$$
I^{\prime} \propto \frac{\cos \theta}{O P^{2}}
$$

that is, the illumination produced at any point of a surface of given material by a given source of light, varies directly as the cosine of the angle of incidence, and inversely as the square of the distance of the point of the surface from the source of light.
129. By means of this principle, instruments have been devised for comparing the intensities of different illuminating sources.

It is clear that for different sources of light the quantity I of the last Article will be proportional to the intensity of the source, and may therefore be taken as a measure of the intensity in any particular case.

If then we dispose two screens of the same material in such a manner that the illumination produced at definite points of them by the two sources of light shall be equal, we shall only have to measure the values of $O P$ and $\cos \theta$ for the two sources of light, and, the values of I^{\prime} being the same in the two cases, the ratio of the two values of I will be obtained.

This method is practicable because, although the eye is not able to judge of the ratio of the intensities of two illuminations which differ from each other, it can judge tolerably accurately of the equality of two illuminations.
130. One very simple method is to allow a screen to be lighted by both sources of light, and to place a stick between this screen and the two sources. Each light will cast a shadow of the stick on the screen, and the lights must be moved until these shadows appear of equal darkness. The screen being lighted by both lights and each shadow only lighted by one, it is clear that when this is the case the illuminations produced on the screen by the lights will be equal; and if the lights be so placed that the angle of incidence is the same, the illuminating powers of the lights will be directly as the squares of their distances from the screen.
131. Another contrivance for effecting the same thing consists of a screen of paper, the greater portion of which is rendered translucent hy being soaked with oil, while a small circular portion in its centre is left opaque. The two lights whose intensities are to be compared are placed on opposite sides of this screen. If the lights be placed at equal distances from the screen, the opaque part of the screen will appear brighter than the translucent part on that side on which is
the stronger light, while on the other side, the reverse will be the case. A reflector is placed on each side of the screen, inclined at an angle of 45° to it, so that an observer standing opposite to the edge of the screen can see the reflections of the two sides simultaneously. If the lights are adjusted so that the illuminations of the two sides appear equal, the intensities of the lights are directly proportional to the squares of their respective distances from the screen.
132. A possible disadvantage attending the arrangement described in the last Article is, that the reflections of the two sides of the screen are seen one by the right eye and the other by the left eye of the observer, and the two eyes of the same person are seldom of exactly the same power. This defect is obviated in Ritchie's Photometer.

This consists of an oblong box open at each end; about the middle of this box are placed two reflectors $C D, E D$ inclined at 45° to its length, and cut from the same piece

of glass, to ensure equality of reflecting power ; just above the line of intersection of these mirrors and parallel to this line is a slit in the top of the box, covered with a piece of parchment or paper.

The lights to be compared are placed, one opposite to each end of the box, so that the light from them falls on the mirrors $C D$ and $D E$, and is reflected so as to illuminate the parchment which covers the slit. An eye looking down on this parchment, through a tube blackened internally so as to prevent extraneous light from interfering, will see the two parts of the parchment illuminated by the two sources of light respectively. The lights must be moved till these two parts appear equally bright ; the intensities of the lights
are directly proportional to the squares of their distances from the mirrors when this is the case.
133. The calculation of the illumination produced at a given point of a surface by a finite illuminating surface involves a principle which may be thus stated:

Any self-luminous surface of uniform brightness appears equally bright, whatever may be its distance from the eye and at whatever angle it may be inclined to the line of sight.

For instance, in looking at a mass of uniformly heated glowing iron in a furnace, the eye is unable to detect any variation in the apparent brightness of the different portions of iron due to their different distances or different inclinations to the line of sight.

Another illustration is afforded by the fact that the different portions of the sun's disc appear equally bright, although they are at different distances and inclinations to the line of sight.

Thus we may say generally that any portion of a luminous surface sends as much light to the eye as any other portion of the same surface, at whatever distance, or however placed, which subtends the same solid angle at the eye.

As a particular case of this proposition, any element of the surface will send out obliquely an amount of light

which is to that which it emits directly, in the ratio of $\sin \theta$ to unity, θ being the angle which the direction of emission makes with the surface. For if $P Q$ be any element of the surface, and $P E$ the oblique direction of emission, the amount of light emitted in that direction will only be the same as would be emitted directly by a portion of the surface $P H$, where $Q H$ is drawn parallel to, and $P H$ perpendicular to, $P E$. But $P H=P Q \sin \theta$, whence the required result follows.
134. Let $A B$ be any uniform illuminating surface, and let P be any point in a plane at which the illumination is required. With P for vertex and with the boundary of $A B$ for base, describe a cone. Also with centre P and any radius $P a$ describe a sphere which will cut this cone in some curve

$a b$. If the portion of the surface of the sphere contained within this curve were supposed to be of illuminating power equal to that of $A B$, by the last Article the illumination produced by it at P would be the same as that produced by $A B$.

Let e be any small element of this spherical surface, and let θ be the angle which $e P$ makes with the plane at P. Then, if C be the intrinsic illuminating power of $A B$, the illumination produced by e at P will, by Art. 128,

$$
=C \cdot e \cdot \frac{\sin \theta}{(P e)^{2}}=\frac{C \cdot e \sin \theta}{P a^{2}} .
$$

But $e \sin \theta$ is the projection of the small area e on the plane in which P lies, since $\frac{\pi}{2}-\theta$ is the angle between that plane and the element e. Hence the whole illumination produced by $A B$ at P
$=\frac{C \times \text { projection of surface included within the curve } a b \text { on plane at } P}{P a^{2}}$
a formula which can often be made of use in calculation.
135. A useful and important example of the last Article is found in the investigation of the illumination produced at any point of a surface by a uniformly luminous sphere.

Let O be the centre of the luminous sphere, a its radius. Let P be the point in the surface at which the illumination is required to be found, and let θ be the angle between $O P$

and the tangent-plane to the surface at P, that is, the plane with which a small element of the surface at P may be supposed to coincide (Art. 9). Let $O P=c$:

Let lines be drawn from P touching the sphere. It is clear that all these lines will lie on a right circular cone whose vertex is P and whose semivertical angle is the angle whose sine is $\frac{a}{c}$. With centre P, and any radius $P a$, describe a sphere, which will cut the cone in a circle $a b$. The projection of the portion of the spherical surface included by this circle on the plane at P is the same as the projection on the same plane of the area of the circle itself, and therefore equals

$$
\pi \cdot P a^{2} \cdot \sin ^{2} O P A \sin \theta=\pi \cdot P a^{2} \cdot \frac{a^{2}}{c^{2}} \sin \theta .
$$

Hence the illumination at P produced by the sphere

$$
\begin{aligned}
& =\frac{C}{P a^{2}} \times \frac{\pi \cdot P a^{2} \cdot a^{2}}{c^{2}} \sin \theta \\
& =\frac{C \pi a^{2}}{c^{2}} \sin \theta .
\end{aligned}
$$

This expression gives the illumination at a point P. The illumination on the element of surface containing P is obtained by multiplying this expression by the area of the element.

EXAMPLES. CHAPTER X.

1. If the wheel in Fizeau's experiment have 720 teeth and make $21 \frac{1}{2}$ turns in a second, when the first eclipse takes place, find the velocity of light; the distance between the stations being three miles.
2. The light from two sources is allowed to fall on the same screen. One light is at a distance a and the light falls directly from it on the screen. From the other, which is at a distance $3 a$, the light falls at an obliquity of 60°. The illuminations of the screen from the two sources being equal, compare the intrinsic brightness of the two lights.
3. A luminous point is placed at the focus S of an ellipse. Two focal chords $P S p$ and $Q S q$ are drawn. Show that the sum of the illuminations of the arcs $P Q$ and $p q$ is the same as long as the angle $P S Q$ is the same.

Hence find the whole illumination of the perimeter of the ellipse.
4. A very narrow band of uniform breadth κ is bent into the form of an elliptical hoop. A luminous sphere, of radius a and intrinsic brightness I, is placed with its centre at the focus of the ellipse. Show that the whole illumination of the hoop is equal to $\frac{4 \pi^{2} a^{2} \kappa I}{L}$, where L is the latus rectum of the ellipse.
5. Find the position of a bright point which equally illuminates the three sides of a given triangle.
6. A small plane area is placed at right angles to the axis of a paraboloid of revolution whose convex surface is uniformly luminous. Prove that the illumination produced at the point of the plane where it meets the axis varies inversely as the distance of this point from the focus of the paraboloid.
7. A small plane area is placed parallel to a plane lamina of intrinsic brightness I, of breadth $2 a$, and of infinite length, at a distance c from the centre of the lamina in a line perpendicular to the lamina. Prove that the illumination at the centre of the plane area is $\frac{\pi a I}{\sqrt{a^{2}+c^{2}}}$.
8. Show how to calculate the illumination produced by a window on a point of the floor directly in front of the centre of the window: the window being supposed to reach to the level of the floor.
9. Two spheres are luminous, and a small plane area is placed on a line joining their centres, its plane being perpendicular to this line. Find where it must be placed in order that its two surfaces may be equally bright.
10. Three equally bright points are placed at the angular points of an equilateral triangle. If a plane area be placed at the centre of the triangle in any manner, show that it will be equally bright on both sides.
11. A triangular prism, whose nine edges are all equal, is placed with one of its rectangular faces on a horizontal table, and illuminated by a sky of uniform brightness; show that the total illuminations of the inclined and vertical faces are in the ratio of $2 \sqrt{ } 3$ to 1 .
12. A luminous point is placed on the axis of a truncated conical shell ; prove that the whole illumination of the shell varies as

$$
\frac{c_{2}}{\left(c_{2}^{2}+a_{2}^{2}\right)^{\frac{1}{2}}} \pm \frac{c_{1}}{\left(c_{1}^{2}+a_{1}^{2}\right)^{\frac{1}{2}}}
$$

where a_{1}, a_{2} are the radii of the circular ends of the shell, and c_{1}, c_{2} the distances of the luminous point from their planes.
13. The sides of a triangle are the bases of three infinite rectangles of the same brightness, whose planes are perpendicular to the plane of the triangle : show that all points within the triangle are equally illuminated. Find the position of a point in the plane of the triangle, such that the illuminations at that point received from the three rectangles may be equal.
14. In making with an astronomical telescope an observation for which it is essential that the brightness of the image on the retina should be at least a hundredth part of that of the object, show that the highest magnifying power that can be obtained is 1000 , the diameter of the object-glass being 25 inches and that of the pupil of the eye $\frac{1}{4}$ inch. What is the highest magnifying power that can be used without any diminution of brightness?

CHAPTER XI.

THE RAINBOW.

136. In this Chapter we propose to give a brief explanation of the formation of a Rainbow, as far as it can be done by the principles of Geometrical Optics.
137. If a pencil of parallel rays falls on a refracting sphere, some portion of the light will be reflected externally, some portion will be refracted into the sphere. Of this latter part, when it is incident internally at the surface of the sphere, some portion will emerge, and another portion will be reflected internally, and be again incident on the internal surface of the sphere. At this second incidence the same division will again take place, and so on, at each successive internal incidence.

The primary and secondary rainbows fre produced by portions of sunlight which, having been incident on raindrops, emerge after one or two internal reflections respectively.

We have therefore to consider mainly the circumstances attending the refraction and reflection of these portions in the case of light incident on a sphere of water.
138. Let $P Q$ be the axis of a pencil of parallel rays incident on a refracting sphere at Q, refracted at Q along $Q R$, reflected internally at R, and again incident at S. Let $S T$ be the direction of that part which emerges at S, and

$$
\begin{array}{ll}
\text { A. G. o. } 11
\end{array}
$$

$S U$ the direction of the reflected part, which is incident internally again at U, where some part of it emerges along $U V$.

We shall first examine the positions of the primary foci of the pencils emerging at S and U respectively.

Let ϕ be the angle of incidence at Q, ϕ^{\prime} the angle of refraction. It is plain that ϕ^{\prime} will also be the angle of incidence at R, S and U, and that ϕ will be the angle of emergence at S or U.

Let μ be the index of refraction, r the radius of the sphere. Let q_{1}, q_{2}, q_{3} be the primary foci after refraction at Q, reflection at R, and emergence at S respectively. Let q_{4}, q_{5} be the primary foci after reflection at S and emergence at U respectively. Then, by Art. 46, since the incident pencil consists of parallel rays,

$$
Q q_{1}=\frac{\mu r \cos ^{2} \phi^{\prime}}{\mu \cos \phi^{\prime}-\cos \phi} .
$$

But $Q R=2 r \cos \phi^{\prime} ; \therefore R q_{1}=2 r \cos \phi^{\prime}-\frac{\mu r \cos ^{2} \phi^{\prime}}{\mu \cos \phi^{\prime}-\cos \phi}$

$$
=r \cos \phi^{\prime} \cdot \frac{\mu \cos \phi^{\prime}-2 \cos \phi}{\mu \cos \phi^{\prime}-\cos \phi} .
$$

And by Art. 45,

$$
\frac{1}{R q_{2}}+\frac{1}{R q_{1}}=\frac{2}{r \cos \phi^{\prime}},
$$

whence

$$
\begin{aligned}
R q_{2} & =r \cos \phi^{\prime} \cdot \frac{\mu \cos \phi^{\prime}-2 \cos \phi}{\mu \cos \phi^{\prime}-3 \cos \phi} ; \\
\therefore S q_{2} & =r \cos \phi^{\prime} \cdot \frac{\mu \cos \phi^{\prime}-4 \cos \phi}{\mu \cos \phi^{\prime}-3 \cos \phi} .
\end{aligned}
$$

But by Art. 46,

$$
\frac{\frac{1}{\mu} \cos ^{2} \phi}{S q_{3}}-\frac{\cos ^{2} \phi^{\prime}}{S q_{2}}=\frac{\frac{1}{\mu} \cos \phi-\cos \phi^{\prime}}{r},
$$

whence

$$
\begin{equation*}
S q_{3}=\frac{r \cos \phi\left(\mu \cos \phi^{\prime}-4 \cos \phi\right)}{2\left(\mu \cos \phi^{\prime}-2 \cos \phi\right)} \tag{1}
\end{equation*}
$$

By proceeding in this way it will be easy to obtain a second result

$$
\begin{equation*}
U q_{5}=\frac{r \cos \phi\left(\mu \cos \phi^{\prime}-6 \cos \phi\right)}{2\left(\mu \cos \phi^{\prime}-3 \cos \phi\right)} \tag{2}
\end{equation*}
$$

We may notice incidentally that $S q_{3}$ and $U q_{5}$ respectively become infinite, that is, the rays in the primary plane emerge as a pencil of parallel rays after one or two internal reflections, when

$$
\begin{aligned}
& 2 \cos \phi=\mu \cos \phi^{\prime}, \\
& 3 \cos \phi=\mu \cos \phi^{\prime},
\end{aligned}
$$

respectively.
139. We shall now restrict ourselves to the consideration of the portion of light which emerges after one internal reflection.

The deviation of the axis of the pencil at Q is clearly $\phi-\phi^{\prime}:$ at R its deviation is $\pi-2 \phi^{\prime}$; and at S it undergoes a farther deviation in the same direction of $\phi-\phi^{\prime}$. Its deviation on the whole is therefore

$$
\begin{aligned}
2(\phi & \left.-\phi^{\prime}\right)+\pi-2 \phi^{\prime} \\
& =\pi-2\left(2 \phi^{\prime}-\phi\right) \\
& =\pi-2\left\{\phi^{\prime}-\left(\phi-\phi^{\prime}\right)\right\} .
\end{aligned}
$$

Now we know by Articles 56 and 62, that $\phi-\phi^{\prime}$ increases as ϕ^{\prime} increases, but that for a given increment given to ϕ^{\prime}, the increment of $\phi-\phi^{\prime}$ is larger, the larger the value of ϕ^{\prime}.

Hence if we take a series of pencils whose axes are incident on the sphere at different angles, beginning with direct incidence and gradually increasing the obliquity, $\phi-\phi^{\prime}$ and ϕ^{\prime} will both increase, but at first the increment of $\phi-\phi^{\prime}$ will be less than that of ϕ^{\prime}, while finally the increment of $\phi-\phi^{\prime}$ may be greater than that of ϕ^{\prime}. Hence in this case there must be some value of ϕ^{\prime} for which the increment of $\phi-\phi^{\prime}$ is just equal to that of ϕ^{\prime}.

When ϕ^{\prime} is small we thus have on the whole $2 \phi^{\prime}-\phi$ increasing and therefore the deviation of the axis decreasing, while when ϕ^{\prime} is large we have $2 \phi^{\prime}-\phi$ decreasing, and thus the whole deviation increasing.

There is therefore a value of ϕ^{\prime} such that the deviation is a minimum, and this value is evidently given by the above condition that the alteration in $\phi-\phi^{\prime}$ for a given small change of ϕ^{\prime} is exactly equal to the alteration in the value of ϕ^{\prime}.

This value of ϕ^{\prime} we proceed to investigate.
140. Let ϕ^{\prime} be changed to $\phi^{\prime}+\alpha$ where α is small, then by the above condition, the new value of $\phi-\phi^{\prime}$ must exceed the old value by α. Hence if ϕ_{1} be the new value of ϕ, we must have

$$
\begin{aligned}
\phi_{1}-\left(\phi^{\prime}+\alpha\right) & =\left(\phi-\phi^{\prime}\right)+\alpha ; \\
\therefore \phi_{1} & =\phi+2 \alpha ;
\end{aligned}
$$

$\therefore \sin (\phi+2 \alpha)=\mu \sin \left(\phi^{\prime}+\alpha\right)$;
but

$$
\sin \phi=\mu \sin \phi^{\prime} ;
$$

$\therefore \sin (\phi+2 \alpha)-\sin \phi=\mu\left\{\sin \left(\phi^{\prime}+\alpha\right)-\sin \phi^{\prime}\right\} ;$
$\therefore 2 \cos (\phi+\alpha) \cdot \sin \alpha=2 \mu \cos \left(\phi^{\prime}+\frac{\alpha}{2}\right) \cdot \sin \frac{\alpha}{2}$;
$\therefore 2 \cos (\phi+\alpha) \cdot \cos \frac{\alpha}{2}=\mu \cos \left(\phi^{\prime}+\frac{\alpha}{2}\right)$;
or, since α is to be a very small increment, this gives us

$$
2 \cos \phi=\mu \cos \phi^{\prime} .
$$

If a real value of ϕ^{\prime} can be determined from this equation, for that value the deviation will be a minimum. It will be noticed that (1) is also the condition that the oblique pencil may emerge after one internal reflection as a pencil of parallel rays (Art. 138). We have also

$$
\begin{equation*}
\sin \phi=\mu \sin \phi^{\prime} \tag{2}
\end{equation*}
$$

Squaring and adding these two equations we obtain

$$
\begin{aligned}
& 4 \cos ^{2} \phi+\sin ^{2} \phi=\mu^{2} ; \\
& \therefore 3 \cos ^{2} \phi=\mu^{2}-1 ; \\
& \therefore \cos \phi=\sqrt{\frac{\mu^{2}-1}{3}} ;
\end{aligned}
$$

which gives the angle of incidence for a minimum deviation. In order that the value of ϕ may be real, $\mu^{2}-1$ must be less than 3 , or μ must be less than 2. This is the case with water.
141. Let us now consider a beam of sunlight incident on the surface of a raindrop. Let O be the centre of the drop, $S O$ the direction of incidence of the sun's light. Let $S Q$ be that ray which is incident on the drop at the angle ϕ discovered in the last Article, $S P$ any other ray.

The ray which comes in the line $S O$ is reflected back along $O S$, and its deviation is 180°. As the point of incidence passes from A towards Q, the deviation decreases and the ray which emerges after one internal reflection comes out in a direction continually more and more inclined to $O S$, until, when the ray is incident at Q, the direction of emergence attains its greatest angular distance from $O S$; when the point of incidence passes Q, the deviation again increases and the ray emerges at a less inclination to $O S$.

Also, considering the whole beam of sunlight which comes on to the upper half of the drop, as made up of a number of small pencils, the pencil whose axis passes with minimum deviation alone emerges as a pencil of parallel rays in the primary plane.

Thus if an eye be placed at a considerable distance from this drop, the only light which will produce any great impression on the eye will be that which emerges with minimum deviation, as all the other small pencils will have diverged considerably before they reach the eye, and only a very small portion of them will enter the eye.
142. Let us now suppose A, B, C, D to be a number of raindrops arranged in a vertical line, and let sunlight come upon them all. Let an eye be so placed that light, which is

emergent from B with minimum deviation after one internal reflection, enters it. From A, which is above B, it is clear that no light will enter the eye, while from B strong light will enter the eye. From C some faint light will enter the eye, caused by divergent pencils whose deviation is slightly greater than the minimum, and a little sensible illumination from drops a little lower still. Thus the eye will see a bright point in the direction of B, while there will appear to be no light above B, but light rapidly diminishing in intensity below B.

Through E draw a line $E F$ parallel to the direction of the incident sunlight. Then it is clear that, if we draw any plane through $E F$ inclined to the vertical, a similar appearance will be produced by the raindrops which at any instant lie in this plane.

Thus on the whole there will be seen a portion of a ring of light, whose apparent angular radius is the angle $B E F$, and whose centre is in the line $E F$, that is, exactly opposite to the direction of the sun; outside this ring is comparative darkness, while within it there is a certain amount of illumination, decreasing as we recede from the border.
143. We have hitherto taken no account of the different refrangibilities of the various rays of which sunlight is composed.

The angle ϕ, obtained in Art. 140, and consequently the minimum deviation, will however be different for different values of μ. The statements of the last Article will be true for each kind of light, but the size of the rings being different for different values of μ, there will not be a bow of white light but a series of bows, partly overlapping each other, corresponding to the different rays of the spectrum. The only important point to be investigated is the variation of the size of the ring for different values of the refractive index.

The angular radius of the bow in any case is easily seen from the figure in Art. 141 to be $2\left(2 \phi^{\prime}-\phi\right)$. In fact the bow will be largest when the minimum deviation is least.

Now $\sin \left(2 \phi^{\prime}-\phi\right)=\sin 2 \phi^{\prime} \cos \phi-\cos 2 \phi^{\prime} \sin \phi$

$$
=2 \sin \phi^{\prime} \cos \phi^{\prime} \cos \phi-\left(\cos ^{2} \phi^{\prime}-\sin ^{2} \phi^{\prime}\right) \cdot \mu \sin \phi^{\prime}
$$

$$
=\mu \sin \phi^{\prime} \cos ^{2} \phi^{\prime}-\mu \sin \phi^{\prime}\left(\cos ^{2} \phi^{\prime}-\sin ^{2} \phi^{\prime}\right),
$$

(since when the deviation is a minimum $\mu \cos \phi^{\prime}=2 \cos \phi$),

$$
\begin{aligned}
& =\mu \sin ^{3} \phi^{\prime} \\
& =\frac{\sin ^{3} \phi}{\mu^{2}} .
\end{aligned}
$$

But $\cos \phi=\sqrt{\frac{\mu^{2}-1}{3}} ; \therefore \sin \phi=\sqrt{\frac{4-\mu^{2}}{3}}$.
Hence if α be the angular radius of the bow corresponding to any value of μ, we have

$$
\sin \frac{\alpha}{2}=\frac{\left(4-\mu^{2}\right)^{\frac{3}{2}}}{3 \mu^{2} \sqrt{ } 3} .
$$

It is evident from this formula that the greater the value of μ, the less will be the value of α. Hence the red bow has the largest radius. Within the red bow will be a series of bows, of colours somewhat mixed but gradually varying from red to violet. Inside this coloured border will be a space of sky sensibly brighter than the average, while beyond the red margin the sky will appear compara tively dark.

These phenomena are not affected by the fact that the raindrops are not stationary. If a shower of rain be falling and sunlight be incident on the drops, a series of drops in rapid succession will appear in the direction of B in Art. 142, and a continuous impression will be produced on the eye.
144. A somewhat similar investigation applies to the light which emerges after two internal reflections, and which produces the secondary rainbow. The deviation of the ray in this case is

$$
2 \pi-2\left(3 \phi^{\prime}-\phi\right) .
$$

And by reasoning similar to that in Art. 139, it can be shown that the deviation will have a minimum value when

$$
\begin{aligned}
& 3 \cos \phi=\mu \cos \phi^{\prime} ; \\
& \cos \phi=\sqrt{\frac{\mu^{2}-1}{8}} .
\end{aligned}
$$

For this value of ϕ, a small pencil will consist of parallel rays in the primary plane on emergence after two internal reflections (Art. 138).

In the accompanying figure $P Q$ is the incident ray which passes with minimum deviation, and finally emerges

along $T U$. The deviation being $2 \pi-2\left(3 \phi^{\prime}-\phi\right)$, it is clear that the angular radius of the bow is equal to $2\left(3 \phi^{\prime}-\phi\right)$.

It will be found that if A be a drop from which light enters the eye with minimum deviation after two internal reflections, no light will enter the eye from drops below A, while faint light will reach the eye from drops above A. Thus the space within the secondary bow will be darker, while outside the bow will be light gradually fading away.

The minimum deviation can be shown to increase with μ. Hence the radius of the bow, which increases with the minimum deviation, is greatest for violet light and least for red light.

The radius of the secondary bow is considerably larger than that of the primary bow.
145. Rainbows may theoretically be produced by light which has been internally reflected more than twice, but the intensity of the light diminishes so rapidly at each reflection that they cannot be seen practically with sunlight.

The theoretical investigation of such rainbows can be carried out in a similar way to that in which we have discussed the primary rainbow.

MISCELLANEOUS EXAMPLES.

1. If a pencil of parallel rays be incident obliquely on a refracting sphere, and emerge after one internal reflection with the least possible deviation, prove that the distance between the primary and secondary foci after the first refraction is $\frac{\left(4-\mu^{2}\right) r}{\mu \sqrt{3 \mu^{2}-3}} ; r$ being the radius of the sphere.
2. Show that if β be the angular radius of the secondary bow corresponding to any value of μ,

$$
\sin \frac{\beta}{2}=\frac{\sqrt{\left(\mu^{2}-1\right)\left(9-\mu^{2}\right)^{3}}}{8 \mu^{8}}
$$

3. If bubbles of air were rising in water, would a fish see a bow corresponding to a rainbow?

If drops of liquid of mean refractive index 2 were falling in the air, what would be the order of colours in the bow which would be formed?
4. A very short-sighted person, who is capable of seeing nothing distinctly beyond 3 inches, is able to see distinctly a small object distant $3 \frac{1}{4}$ inches, through a pane of glass whose refractive index is $\frac{3}{2}$: find the thickness of the glass.
5. Four convex lenses, whose focal lengths are $a, b, b, a^{\llcorner }$ respectively, are placed at intervals $a+b, 2 b \frac{a+b}{a-b}, a+b$, on the same axis: show that a pencil of light, after refraction through all four lenses, diverges from the point from which it originally emanates.
6. A lens is moving with velocity p perpendicular to its axis, and an object at a distance a from the lens is moving with a velocity q across the axis in the opposite direction. Find the focal length of the lens, that to an eye on the other side of the lens the object may appear at rest.
7. A vessel in the form of a right cylinder polished on the inside stands in the sunshine. The vessel has an opaque cover in which is a hole. Prove that if this hole be not intersected by a certain vertical plane there will be a circular space in the base of the cylinder on which no light falls whatever be the length of the cylinder, and that this is equally true after any amount of water has been poured in.
8. Two rays proceed from the foci S, H of an ellipse, along the lines $S P$ and $H Q$ and are reflected at the ellipse; find the position of a plane mirror so placed that each ray after reflection at the mirror may return to the focus; and prove that the sum of the lengths of the paths of the rays is constant for all positions of P and Q.
9. A ray is refracted from vacuum through a series of \downarrow plates, whose refractive indices are such that the ray suffers an equal amount of deviation α at each boundary. If μ_{r} be the absolute refractive index of the $r^{\text {th }}$ medium, prove that μ_{r} $\sec \alpha$ is a harmonic mean between μ_{r-1} and μ_{r+1}.
10. Two parabolas have a common focus and axis, and their concavities are turned in the same direction. The inner surface of the outer parabola and the outer surface of the inner can reflect light. A ray of light starts from a point P on the outer towards the focus, and after $2 n$ reflections strikes the inner again at Q. Show that the distance traversed by the ray is greater than the difference of the distances of P and Q from the focus by n times the difference of the semilatera recta.
11. A transparent sphere is silvered at the back, prove \checkmark that the distance between the images of a speck within it formed (1) by one direct refraction, (2) by one direct reflection and one direct refraction is $\frac{2 \mu a c(a-c)}{(a+c-\mu c)(\mu c+a-3 c)}, a$ being the radius of the sphere, and c the distance of the speck from the centre, measured towards the silvered side
12. Q is a luminous point situated anywhere on the circumference of a reflecting circle, $Q P$ is any ray incident at P; $P Q^{\prime}$ is the chord of the circle in the direction of the reflected ray. If q be the point in which this reflected ray cuts the ray reflected from a point consecutive to P, prove that $Q^{\prime} q=2 P q$.
13. A ray of light, traversing a homogeneous medium, is incident on a globular cavity within it: supposing the limit of the magnitude of the deviation of the ray, produced by its passing through the cavity, to be θ, prove that the index of refraction of the medium is sec $\frac{\theta}{2}$.
14. A reflecting polygon of an even number of sides can be inscribed in a circle: prove that if a ray of light proceeding from a point in any side returns to the same point after having been reflected at each side in succession, it will retrace its path.
15. An eye is placed close to the surface of a sphere of glass which is silvered at the back; the refractive index from air to glass being $\frac{3}{2}$, prove that the image which the eye sees of itself is $\frac{3}{5}$ of the natural size.

ANSWERS TO EXAMPLES.

CHAPTER I.

$\begin{array}{llll}\text { (1) } 30^{\circ} & \text { (2) } 30^{\circ} & \text { (3) } 18^{\circ} & \text { (4) A ray of light from }\end{array}$ any point of the base of the cup incident obliquely on the surface of the water is bent farther from the vertical, and may therefore reach an eye placed too far to one side of the cup to be reached by a ray coming in a straight line from that point of the base to the rim of the cup. (5) The ray from the farthest point of base to the nearest point of upper rim is refracted out of water into air so as to cut the opposite side at $2 \frac{1}{4}$ inches from the base. Hence angle of incidence in water

$$
=\tan ^{-1} \frac{3}{4}=\sin ^{-1} \frac{3}{5},
$$

and angle of refraction in air

$$
=\tan ^{-1} \frac{3}{2 \frac{1}{4}}=\tan ^{-1} \frac{4}{3}=\sin ^{-1} \frac{4}{5} ;
$$

\therefore index of refraction from air to water

$$
=\frac{4}{5} \div \frac{3}{5}=\frac{4}{3} .
$$

(6) If

$$
\tan \phi=\mu, \quad \sin \phi=\frac{\mu}{\sqrt{1+\mu^{2}}} ;
$$

$$
\therefore \sin \phi^{\prime}=\frac{1}{\sqrt{1+\mu^{2}}} ; \quad \therefore \tan \phi^{\prime}=\frac{1}{\mu} .
$$

(7) The angle of incidence being 60°, the angle of refraction is 30° (Ex. (2)). This will also be the angle of incidence of the ray internally on the sphere, and the angle of reflection of the reflected part, while the angle of emergence of the refracted part will be the same as the angle of original incidence. But $30^{\circ}+60^{\circ}=90^{\circ}$, whence the angle between the emergent and reflected rays is a right angle.
(8) The deviation at the first refraction is 30°, at the internal reflection is 120°, and at the emergence is 30° again. The sum of these is 180°, whence the emergent ray is parallel to the incident ray in a reversed direction.
(9) Let ϕ, ϕ^{\prime} be the angles of incidence and refraction;

$$
\therefore \sin \phi=\frac{3 \sqrt{ } 3}{4 \sqrt{2}} ; \therefore \sin \phi^{\prime}=\frac{\sqrt{ } 3}{2 \sqrt{2}} .
$$

The deviation at the first refraction and at emergence will be $\phi-\phi^{\prime}$, and at each internal reflection will be $180^{\circ}-2 \phi^{\prime}$. Hence the whole deviation

$$
=360^{\circ}-4 \phi^{\prime}+2\left(\phi-\phi^{\prime}\right)=360^{\circ}+2\left(\phi-3 \phi^{\prime}\right) .
$$

But $\sin 3 \phi^{\prime}=3 \sin \phi^{\prime}-4 \sin ^{3} \phi^{\prime}=\frac{3 \sqrt{ } 3}{2 \sqrt{2}}-\frac{3 \sqrt{ } 3}{4 \sqrt{2}}=\frac{3 \sqrt{ } 3}{4 \sqrt{2}}=\sin \phi$;
$\therefore \phi=3 \phi^{\prime}$. Hence the deviation $=360^{\circ}$.
(10) These results follow from the fact that the normal to an ellipse at any point bisects the angle between the focal distances of that point, and the corresponding property for a parabola. (11) By the last question the ray will be first reflected to pass through the other focus, and then back again to the original focus. The second part follows from the fact that the sum of the focal distances of any point on the ellipse is equal to the axis major. (12) If $\phi_{1}, \phi_{2}, \phi_{3}$ be the angles in question, we have by Art. (14)

$$
\sqrt{3} \sin 45^{\circ}=\sqrt{6} \sin \phi_{1}=\sqrt{2} \sin \phi_{2}=\frac{\sqrt{15}+\sqrt{3}}{\sqrt{2}} \sin \phi_{3},
$$

whence

$$
\phi_{1}=30^{\circ}, \phi_{2}=60^{\circ}, \phi_{3}=18^{\circ} .
$$

(13) If ϕ be the angle of incidence, and ϕ^{\prime} that of refraction,

$$
P O Q=2 \phi, P O R=180^{\circ}-\phi+\phi^{\prime}, R O Q=180-\phi-\phi^{\prime} .
$$

Hence

$$
2\left(180-\phi+\phi^{\prime}\right)=2 \phi+180-\phi-\phi^{\prime},
$$

or

$$
\phi-\phi^{\prime}=60^{\circ} ; \therefore \sin \phi=\mu \sin \left(\phi-60^{\circ}\right),
$$

whence

$$
\tan \phi=\frac{\mu \sqrt{3}}{\mu-2} .
$$

If $\mu=2, \tan \phi=\infty, \phi=90^{\circ}$ and $\phi^{\prime}=30^{\circ}$, the incidence is grazing, but the relation still holds good. If $\mu<2$, the result cannot be attained.
(14) In this case we have

$$
\begin{aligned}
& 360-2 \phi-2 \phi^{\prime}=2 \phi+180-\phi+\phi^{\prime} ; \\
& \therefore \phi+\phi^{\prime}=60^{\circ} ; \\
& \therefore \sin \phi= \mu \sin \left(60^{\circ}-\phi\right) ; \therefore \tan \phi=\frac{\mu \sqrt{3}}{\mu+2} .
\end{aligned}
$$

(15) From P draw a perpendicular $P H$ on $A B$, and produce it to K, making $H K$ equal to $P H$. Join $Q K$, cutting $A B$ in L. Join PL. Then a ray coming along $P L$ will evidently be reflected along $L Q$. Draw $Q M$ perpendicular to $A C$ and produce it to N, making $M N$ equal to $Q M$. Join $N P$, meeting $A C$ in R. Join $R Q$. Then a ray along $Q R$ will be evidently reflected along $R P$. If $Q R$ and $P L$ meet in O, O is the point required.
(16) Let O be the centre of the sphere, Q the point where the incident ray cuts the axis, R the point of incidence, and q the point where the refracted ray cuts the axis.

Then $\frac{\sin O R Q}{\sin O Q R}=\frac{O Q}{O R}=\mu$; also $\frac{\sin Q R O}{\sin q R O}=\mu ; \therefore \angle O Q R=\angle q R O$, and the triangles $O Q R$ and $O R q$ are therefore similar. Hence

$$
\frac{O q}{O R}=\frac{O R}{O Q}=\frac{1}{\mu}
$$

(17) Draw the tangents to the ellipse at P and Q, cutting in T. Join $T S$, the mirror must be perpendicular to $T S, S$ being the focus.
(18) It can easily be shewn that if $P C P^{\prime}$ be the diameter, and Q a point such that the tangent at Q is perpendicular to that at P, a ray going along $P Q$ will be reflected along $Q P^{\prime}$, and then along $P^{\prime} Q^{\prime}$ if $Q C Q^{\prime}$ be a diameter, and then back to P, and so on, and the length of the path of the ray will be $4 A B$ from the known property that tangents to an ellipse at right angles intersect on a circle whose centre is C and radius $A B$.
(19) This is merely the analytical expression of the last question.
(20) The solution is given in 18.
(21) The angle at the circumference being half that at the centre, we have

$$
\begin{aligned}
& \phi-\phi^{\prime}=30^{\circ} . \quad \text { Also } \sin \phi=\mu \sin \phi^{\prime} ; \\
& \therefore \sin \phi=\sqrt{ } 3 \sin \left(\phi-30^{\circ}\right)=\frac{3}{2} \sin \phi-\frac{\sqrt{ } 3}{2} \cos \phi ; \\
& \therefore \tan \phi=\sqrt{ } 3 ; \therefore \phi=60^{\circ} .
\end{aligned}
$$

A. G. O.

$$
\begin{align*}
& \phi_{1}=\cos ^{-1} \frac{1}{\sqrt{3}}, \quad \phi_{2}=\cos ^{-1} \frac{1}{2} ; \quad \therefore \frac{\sin \phi_{1}}{\sin \phi_{s}}=\mu_{s} \tag{22}\\
& =\frac{\sqrt{\frac{2}{3}}}{\frac{\sqrt{3}}{2}}=\frac{2 \sqrt{2}}{3} .
\end{align*}
$$

(23) If ϕ be the angle of incidence, and ϕ^{\prime} that of refraction, ϕ^{\prime} will also be the angle of incidence at the inner surface of the sphere ; the light cannot therefore ever be incident internally at the critical angle.
(24) If ϕ be the angle of incidence, ϕ^{\prime} that of refraction at the curved surface, the angle of incidence on the plane surface will be $\phi-\phi^{\prime}$. Call this ψ. The largest value of ψ is when ϕ has its largest value (Art. 56). Hence the largest value of ψ is $\frac{\pi}{2}-a$, where α is the critical angle. Hence ψ cannot equal the critical angle unless 2α is less than $\frac{\pi}{2}$, or α is less than $\frac{\pi}{4}$, or $\frac{1}{\mu}<\frac{1}{\sqrt{2}}$, or $\mu>\sqrt{2}$.
(25) The lines joining the feet of the perpendiculars make equal angles with the sides of the original triangle.
(26) If $P G$ the normal at a point P of an ellipse cuts the axis in G, and S be the farther focus $S G=e S P$;

$$
\therefore \sin S P G=e \sin P S F ; \therefore \sin P S G=\mu \sin S P G .
$$

Hence if the incident ray be parallel to $G S$ the refracted ray will be along $P S$.
(27) The extreme incident rays are incident, and emerge at grazing incidence ; and if a be the critical angle a is the angle of refraction, and also the angle which the extreme incident rays make with the axis. The angular distance of the point of emergence from the axis is easily seen to be

$$
180^{\circ}-\left(180^{\circ}-2 a\right)-\left(90^{\circ}-a\right)=3 a-90^{\circ} .
$$

Hence the radius of the ring required

$$
\begin{aligned}
=r \tan \left(\frac{3 a}{2}-45^{\circ}\right) & =r \sqrt{\frac{1-\cos \left(3 a-90^{\circ}\right)}{1+\cos \left(3 a-90^{\circ}\right)}} \\
& =r \sqrt{\frac{1-\sin 3 a}{1+\sin 3 a}} ;
\end{aligned}
$$

and by substituting for a from the equation $\sin a=\frac{1}{\mu}$ and reducing, the result follows.
(28) and (29) Are easy pieces of Solid Geometry or Spherical Trigonometry.
(30) Let A be the vertex and $A P$ any ray reflected at P. The reflected ray $P Q$ cuts the axis of the parabola in Q so that $A Q=2 A N, P N$ being perpendicular on the axis. If $Q P$ cut the tangent at A in $Z, A Z=2 P N$ and $A Q=2 A N$, whence, since $P N^{2}=4 A S . A N, A Z^{2}=8 A S . A Q$. Hence $P Q$ touches a parabola whose vertex is A, latus rectum $32 A S$, and concavity turned in the opposite direction to that of the given one.

CHAPTER II.

(1) The pencil of rays diverging from each point of the'stick under water diverges after refraction into air from a geometrical focus nearer in a fixed ratio to the surface of the water than the original point.
(2) 30°. (3) At a distance $8 a$ from the centre (Art. 37).
(4) $\frac{2}{3}$ inch.
(5) 30 inches behind the mirror. (6) 42 inches in front of the mirror.
(7) Depends on equation (1) in Art. 24.
(8) A, F, O, Q form a harmonic range, and therefore also a, f, o, q.
(9) Consequence of fact that A, F, O, Q form a harmonic range.
(10) The foot of the perpendicular from the luminous point lies on a circle of half the size of the locus of the image. Hence the mirror touches the conic section of which this is the auxiliary circle, and the luminous point one focus. Or if the luminous point lies on this circle the mirror always passes through the other end of the diameter through it.

$$
12-2
$$

(11) This is the converse of (10). (12) The locus of the image is similar to that of the foot of the perpendicular on the mirror.
(13) and (14) Depend on the proposition that the feet of the perpendiculars on the three sides of a triangle from any point in the circumscribing circle lie on a straight line.
(15) The distance between the feet of the perpendiculars from the luminous point on two consecutive sides is easily seen (Euclid III. 31) to be equal to the length of either perpendicular, whence the result follows.

$$
\begin{equation*}
\frac{\mu}{v}-\frac{1}{u}=-\frac{\mu-1}{r} \text { and } v=-u \tag{16}
\end{equation*}
$$

(17) With O as centre, and $O Q$ as radius, describe a circle, cutting the given circle again in q. Produce $q O$ to meet the given circle in p and the mirror in r. Then $O q=O Q$, and $\therefore O p=O P$ and $O R=O r$. Hence p and q are conjugate foci.
(18) $-\frac{1}{q_{1}}+\frac{1}{p}=\frac{2}{r}, \frac{1}{q_{2}}-\frac{1}{p}=\frac{2}{r}$. If p, q_{1}, q_{2} be the distances of the luminous point, and the two images from the centre.
(19) If ϕ, ϕ^{\prime} be the angles which the stick and its image make with the horizon, by example (1) $\tan \phi=\mu \tan \phi^{\prime}$, whence $\tan \left(\phi-\phi^{\prime}\right)$ can be expressed in terms of $\tan \phi^{\prime}$ and the least value easily found.

CHAPTER III.

(1) $v_{1}=\frac{r}{4}, v_{2}=r$.
(2) $v_{1}=\frac{3 \sqrt{3}}{4} r, v_{2}=r \sqrt{3}$.
(3) Use Art. (42), putting $\lambda_{2}=\lambda_{1} \sec 60^{\circ}=2 \lambda_{1}$.
(4) $\frac{1}{v_{1}}=\frac{1}{3 u}+\frac{\sqrt{3}}{r \sqrt{7}}, \frac{1}{v_{2}}=\frac{3}{4 u}+\frac{\sqrt{7}}{4 r \sqrt{3}}$.
(5) $\tan \phi=\mu, \therefore \tan \phi^{\prime}=\frac{1}{\mu} ; \therefore \frac{1}{v_{1}}=\frac{1}{\mu^{3} u}+\frac{\left(\mu^{2}-1\right) \sqrt{\mu^{2}+1}}{\mu^{3} r}$, $\frac{1}{v_{2}}=\frac{1}{\mu u}+\frac{\left(\mu^{2}-1\right)}{\mu r \sqrt{1+\mu^{2}}}$.

$$
\begin{equation*}
\phi=\frac{\pi}{4}, u=r \sqrt{2} ; \therefore v_{1}=\frac{r \sqrt{2}}{3}, v_{2}=r \sqrt{2} \tag{6}
\end{equation*}
$$

$$
\text { If } \begin{align*}
v_{1}=v_{g} & , \frac{1}{u}+\frac{\mu \cos \phi^{\prime}-\cos \phi}{r}=\frac{\cos ^{2} \phi}{u \cos ^{2} \phi^{\prime}} \tag{®}\\
& +\frac{\mu \cos \phi^{\prime}-\cos \phi}{r \cos ^{2} \phi^{\prime}}, \text { whence } u=r . \frac{\sin \left(\phi+\phi^{\prime}\right)}{\sin \phi^{\prime}},
\end{align*}
$$

and the square of the distance of the point from the centre $=u^{2}+r^{2}-2 r u \cos \phi$, whence the result follows.

$$
\begin{equation*}
v_{1}=\frac{r}{2 \sqrt{2}}, v_{2}=\frac{r}{\sqrt{2}} . \quad x=\frac{r \sqrt{2}}{3} \text { or } r \frac{\sqrt{2}+1}{4+\sqrt{2}} . \tag{8}
\end{equation*}
$$

(9) It easily follows that $u=v_{2} \sin \phi \sin \phi^{\prime}$, whence since

$$
\frac{\mu}{v_{2}}-\frac{1}{u}=\frac{\mu \cos \phi^{\prime}-\cos \phi}{r},
$$

we have $\frac{\mu \cos \phi^{\prime}-\cos \phi}{r}=-\frac{1}{u}\left(1-\mu \sin \phi \sin \phi^{\prime}\right)=-\frac{\cos ^{2} \phi}{u}$;

$$
\therefore \frac{\mu \cos ^{2} \phi^{\prime}}{v_{1}}=0 ; \therefore v_{1}=\infty .
$$

(10) If $\phi=\frac{\pi}{3}$ and $v_{1}=2 r \cos \phi^{\prime}$, we easily get

$$
\mu \cos \phi^{\prime}=2 \cos \phi=1 ; \therefore \cos \phi^{\prime}=\frac{1}{\mu} .
$$

(11) The distance of the final primary focus from the second point of incidence is found, by examining the two reflections, to be $\frac{4 r \cos \phi}{5}$, whence we easily get by Trigonometry

$$
\begin{aligned}
& \frac{2 r \cos \phi}{\frac{4 r \cos \phi}{5}}=\frac{\sin 3 \phi}{\sin \phi}=3-4 \sin ^{2} \phi \\
& \therefore 2-4 \sin ^{2} \phi=2 \cos 2 \phi=\frac{3}{2} .
\end{aligned}
$$

CHAPTER IV.

(1) 45° or 135° (3) A ray of light parallel to any side of the triangle will be reflected from the second side parallel to the third. After another reflection it will return to the original point, having travelled a distance $=a$. Hence after each pair of reflections the image is removed to a distance a from the original point of light by Ex. 2. After an odd number of
reflections the light will be travelling along a line parallel to a side of the triangle at a perpendicular distance $\frac{a}{3} \cdot \frac{\sqrt{3}}{2}$ from the point of light, and half-way between the $\overline{2 n+1}{ }^{\text {th }}$ and $(2 n+2)^{\text {th }}$ reflections it will have travelled a distance $n a+\frac{a}{2}$. Hence the distance of the image from the luminous point

$$
=a \sqrt{\left(n+\frac{1}{2}\right)^{2}+\frac{1}{12}}=a \sqrt{n^{2}+n+\frac{1}{3}} .
$$

(4) 7, provided the point's angular distance from the nearer mirror is less than 20°, otherwise 8 . (6) 5 , if the angular. distance from the nearer mirror is less than 20°, otherwise 4. (8) The three images, (1) that formed by one reflection at the concave mirror; (2) that formed by one reflection at the plane and one at the concave mirror; (3) that formed by one reflection at the concave mirror, one at the plane and a second at the concave mirror. At the first coincidence the candle must coincide with the centre of the surface of the mirror, and it is evident that the other two will coincide from the method of their production. The other part is a straightforward application of the formulæ for reflection.
(9) Let P_{1} and P_{2} be the two images of P. Then $P_{1} P P_{g}$ lie on a circle whose centre is O, and the angle $P_{1} O P_{2}=2 A O B$. Also $P_{1} P_{2}=$ length of path $P Q R=2 O P \sin \frac{1}{2} P_{1} O P_{s}=2 O P \sin A O B$. $Q O$ and $R O$ bisect the two exterior angles of $P Q R, \therefore O P$ bisects the interior angle $Q P R$. (10) If v_{n} and v_{n+1} be the distances of the foci from the centre, after n and $\overline{n+1}$ reflections, we have $\frac{1}{v_{n+1}}+\frac{1}{v_{n}}= \pm \frac{2}{r}$ according as reflection takes place at the nearer or farther are ; whence the result will follow. (11) The length is twice the distance between the directrices of the parabolas. The condition required is that the parabolas shall be equal. (12) The ray after one reflection must be perpendicular to the opposite side of the cone. Hence the angle of incidence is $2 a$. (13) The images of the luminous point will be a series of rings, of radii differing by the diameter of the cylinder. Each of these will form on the screen a ring of width equal to $\frac{5}{2}$ the diameter of the cylinder, and each of these is overlapped for a width equal to the diameter of the cylinder on either side. (14) A ray apparently
proceeding from a point at the distance $\frac{h}{\sqrt{\mu^{2}-1}}$ from the centre of the base will be incident at the other end of the axis at the critical angle. (15) If v_{n} be the distance for the nth pencil, $v_{n}=\frac{(-1)^{n} r}{2 n}, r$ being the radius of either sphere.

CHAPTER V.

(1) $\phi^{\prime}+\psi^{\prime}=i>2 \alpha, \alpha$ being the critical angle. Hence since $\phi^{\prime}<a, \psi^{\prime}>a$, and no ray can emerge. (2) The ray will emerge if $\psi^{\prime}<a$, or if $i-\phi^{\prime}<\alpha$, or if $\phi^{\prime}>i-a$, if $\mu \sin \phi^{\prime}>\mu \sin (i-a)$, if $\sin \phi>\frac{\sin (i-a)}{\sin a}$. But $\phi=i$, whence the result follows.
(3) $\phi=\frac{\pi}{2}$ and $\psi=i$;

$$
\therefore \sin i=\mu \sin \psi^{\prime}=\mu \sin \left(i-\phi^{\prime}\right)=\frac{\sin (i-a)}{\sin a}
$$

if a is the critical angle, whence the result follows.
(4) By Ex. (2) rays will pass through if

$$
\sin \phi>\frac{\sin (i-a)}{\sin a}
$$

(5), (6) and (7). Use formula at the end of Art. 62.
(8) $\sin \frac{D_{2}+2 i}{2}=\mu \sin \frac{2 i}{2}, \quad \sin \frac{D_{1}+i}{2}=\mu \sin \frac{i}{2}$. Eliminate μ.
(9) The minimum deviation at each prism must equal $\frac{2 \pi}{n}$,
whence i can be found as in (5) and then ϕ, for $\sin \phi=\mu \sin \frac{i}{2}$.
(10) $\phi>30^{\circ}<90^{\circ}$, see Ex. (4).
(11) Eliminate $\phi^{\prime}, \psi^{\prime}$ between the equations

$$
\phi^{\prime}+\psi^{\prime}=i, \sin \phi=\mu \sin \phi^{\prime}, \sin \psi=\mu \sin \psi^{\prime}
$$

(12) In the first formulæ in Art. 65 put $B Q_{1}=B Q_{2}$.
(13) $2 \phi=D+i, \cdots D+i \ngtr 180^{\circ}, \therefore i \ngtr 90^{\circ}$ and

$$
\mu=\frac{\sin \left(45^{\circ}+\frac{i}{2}\right)}{\sin \frac{i}{2}}=\frac{1}{\sqrt{2}}\left(1+\cot \frac{i}{2}\right) \nleftarrow \frac{2}{\sqrt{2}} \text { or } \sqrt{2} .
$$

(14) Exactly like (13), since $2 \phi>180^{\circ}$.
(15) ϕ must evidently be negative. The deviation of the ray reflected at the base $=2 \phi+i$ towards the edge. That of the other $=\psi-\phi-i$ from the edge;

$$
\therefore(2 \phi+i)+(\psi-\phi-i)=\phi+\psi=90^{\circ},
$$

whence by Ex. 11 the result follows.

$$
\begin{equation*}
{ }_{W} \mu_{G}=\frac{{ }_{A} \mu_{G}}{{ }_{A} \mu_{W}}=\frac{\frac{3}{2}}{\frac{4}{3}}=\frac{9}{8} \tag{16}
\end{equation*}
$$

$\therefore{ }_{w} \mu_{G}-\mathrm{I}=\frac{1}{8}, \quad{ }_{A} \mu_{G}-1=\frac{1}{2}$, whence result follows.
(17) Deviation is greatest when $\phi=\frac{\pi}{2}$, and $\therefore \phi^{\prime}=\frac{\pi}{4}$.
(18) In figure to Art. $64, Q Q_{2}=A B \cdot \frac{\sin \left(\phi-\phi^{\prime}\right)}{\sin \phi}$

$$
=t \cdot \frac{\sin \left(\phi-\phi^{\prime}\right)}{\sin \phi \cos \phi^{\prime}}=t\left(1-\tan \phi^{\prime} \cot \phi\right) .
$$

But, Ex. 6, Chap. I. if $\tan \phi=\mu, \tan \phi^{\prime}=\frac{1}{\mu}$.
(19) The angle of incidence on the base is $2 \theta-\phi$, on the second side θ, and on the base again ϕ, and the angle of emergence is θ, whence all the results follow.
(20) This is the case of refraction through a prism whose refracting angle is $\frac{\pi}{2} ; \psi=\phi$ and $\phi^{\prime}=\frac{\pi}{4} ;$

$$
\therefore \sin \phi=\frac{\mu}{\sqrt{2}} ;
$$

$\therefore \sin (2 \phi-D) \sin D=-\sin \frac{\pi}{2} \cos 2 \phi=2 \sin ^{2} \phi-1=\mu^{2}-1$.
(21) If ϕ be the angle of incidence on each prism,

$$
\phi-\phi^{\prime}=\frac{2 \pi}{2 n}=\frac{\pi}{n} .
$$

Also $\phi^{\prime}=\frac{i}{2} ; \therefore \sin \left(\frac{i}{2}+\frac{\pi}{n}\right)=\mu \sin \frac{i}{2}$, whence i is found. The second part is merely Trigonometry.
(22) As i increases ϕ^{\prime} increases, and therefore $\phi-\phi^{\prime}$, which is half the minimum deviation.
(23) If A, B, C be the angles of the prism, by Art. 62 we have $\sin \frac{2 \alpha+A}{2}=\mu \sin \frac{A}{2}$, whence $\cot \frac{A}{2}=\frac{\mu-\cos \alpha}{\sin \alpha}$. Similarly $\cot \frac{B}{2}, \cot \frac{C}{2}$ may be expressed. But by Trigonometry

$$
\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}=\cot \frac{A}{2} \cdot \cot \frac{B}{2} \cdot \cot \frac{C}{2}
$$

(24) If ϕ, ϕ_{1} be the angles of incidence and emergence, the deviation is $\phi-\phi_{1}$. If ϕ^{\prime} be the angle of refraction at the first face and ϕ_{1}^{\prime} that of the incidence on the last, we easily have, remembering Art. 59,

$$
\sin \phi=\mu \sin \phi^{\prime}, \mu \cos \phi^{\prime}=\mu^{\prime} \cos \phi_{1}^{\prime}, \sin \phi_{1}=\mu^{\prime} \sin \phi_{1}^{\prime},
$$

whence

$$
\sin ^{2} \phi-\sin ^{2} \phi_{1}=\mu^{2}-\mu^{\prime 2},
$$

or

$$
\sin \left(\phi-\phi_{1}\right) \cdot \sin \left(\phi+\phi_{1}\right)=\mu^{2}-\mu^{\prime 2} ;
$$

thus $\phi-\phi_{1}$ is least when $\sin \left(\phi+\phi_{1}\right)$ is greatest.

CHAPTER VI.

(1) Art. 71. $A C=\frac{r t}{s-r}$. If $s=\infty, A C=0$. If $r=\infty, A C=-t$. If s and r have opposite signs, $\frac{r}{s-r}$ is a negative proper fraction.
(2) Take the centre of the lens as point of reference for the refractions and reflections. (3) Use formula in Art. 37 for each of the four refractions, remembering that if μ is the refractive index from air to glass, that from glass to air is $\frac{1}{\mu}$. (4) If q_{1}, q_{2} be the foci after the refraction and reflection respectively, we have

$$
\begin{gathered}
A q_{1}=\mu . A Q, \quad-\frac{1}{A q_{2}}+\frac{1}{A q_{1}}=-\frac{2}{O A}, A q=\frac{1}{\mu} A q_{2} \\
\frac{1}{A q}-\frac{1}{A Q}=\frac{2 \mu}{O A}
\end{gathered}
$$

whence
(5) For the first refraction $\frac{\mu}{v_{1}}-\frac{1}{u}=-\frac{\mu-1}{r}$, for the second

$$
\frac{1}{v}-\frac{\frac{1}{\mu}}{v_{1}}=\frac{\frac{1}{\mu}-1}{r} ; \quad \therefore \frac{\mu^{2}}{v}-\frac{1}{u}=-\frac{\mu^{2}-1}{r}
$$

(6) The ray after a first refraction passes through the farther focus. Ex. 27, Chap. I. (7) The foci after each refraction must be determined in succession, having regard to the law (3) of Art. 14. (8) Refer all distances to the common centre of the two hemispheres ; if μ, μ^{\prime} be the refractive indices of the two parts, after the first refraction we have $\frac{1}{v_{1}}=-\frac{\mu-1}{r}$, after the second
$v_{8}=\frac{\mu^{\prime}}{\mu} \cdot v_{1}$, and after the third $\frac{1}{v}-\frac{\frac{1}{\mu^{\prime}}}{v_{8}}=\frac{\frac{1}{\mu^{\prime}}-1}{r}$, whence we get $v_{\text {. }}$ (9) The results of the four refractions must be calculated successively; the geometrical focus is at the point of the cube nearest to the luminous point.
(10) Refer all distances to the common centre of the surfaces.
(11) If u be the distance of the point of light from the mirror, we have $\frac{1}{a}+\frac{1}{u}=\frac{2}{r}$. Also if v_{1} be distance of the focus of light after refraction into the mirror,

$$
\frac{\mu}{v_{1}}-\frac{1}{u}=\frac{\mu-1}{r},
$$

for reflection at the back $v_{2}=-v_{1}$, and for final emergence

$$
\frac{\mu}{v_{2}}-\frac{1}{\beta}=\frac{\mu-1}{r} ;
$$

\therefore adding $\frac{1}{\alpha}-\frac{1}{\beta}=\frac{2 \mu}{r}$, and if α and β have opposite signs, $\frac{1}{\alpha}+\frac{1}{\beta}$ numerically $=$ constant.
(12) The distance from the centre of the image formed by one refraction is $\frac{-\mu a}{3-\mu}$, and of the other image is $\frac{\mu a}{\mu-1}$. Hence the distance between them $=\frac{2 \mu a}{(3-\mu)(\mu-1)}$.
(13) Compare Ex. (2).
(15) Compare Ex. 27, Chap. I.
(16) Let x and y be the distances of the two lenses from the image of O formed by P. Let v_{1}, v_{2} be the distances from the first lens of the images formed by this image in succession;

$$
\therefore \frac{1}{v_{1}}-\frac{1}{x}=\frac{1}{f}, \frac{1}{v_{2}+y-x}-\frac{1}{v_{1}+y-x}=-\frac{1}{f} .
$$

Also the condition required will be satisfied if $v_{2}=x$, whence eliminating v_{1} we get $f=-\frac{x y}{x+y}$.
(17) If lenses are both convex, the focal length of the equivalent lens is $\frac{3}{4} f$, if concave, $\frac{3}{8} f$.
(18) If convex lenses, $\frac{3}{2} f$, if concave, $\frac{1}{2} f$.
(19) $\frac{38}{11}$ feet and $\frac{57}{26}$ feet.
(20) If concave lenses, $\frac{2}{5} f$ and $\frac{1}{2} f$. If convex, $\frac{2}{3} f$ and $\frac{1}{2} f$. (21) $24 a$.
(22) See Art. 138.
(23) The problem is the same as if the ray passed through a plate. See Ex. 18, Chap. V.
(24) 20 feet.
(25) See Art. 69.
(26) Let u and v be the distances of P and Q from the lens A. Then it can easily be shewn that

$$
\frac{a u}{a-u}=\frac{b(v+c)}{b+v+c}-c
$$

And if u^{\prime}, v^{\prime} be the values of u and v when v and u are respectively infinite, we easily get from this equation

$$
\frac{a^{2}}{a-u^{\prime}}=a+b-c \quad(2) ; \quad \frac{b^{2}}{b+v^{\prime}+c}=a+b-c \quad(3) ;
$$

and by subtracting (1) in turns from (2) and (3), and multiplying the results together, we get

$$
\left(u-u^{\prime}\right)\left(v^{\prime}-v\right)=\left(a-u^{\prime}\right)\left(b+v^{\prime}+c\right)
$$

whence by (2) and (3) the result follows.
(27) The rays passing near the vertex, the paraboloidal surfaces may be treated as spheres of radius $2 a$ (Art. 18). If p and q be the distances of the bright point and its image from the posterior surface we can get as in example (5) $\frac{1}{q}-\frac{\mu^{2}}{p}=-\frac{\mu^{2}-1}{2 a}$, whence the first result follows. We deduce

$$
p-q=\frac{p(p-2 a)\left(\mu^{2}-1\right)}{\mu^{2}(p-2 a)-p}
$$

By equating this expression to y and solving as a quadratic in p, we find that the least value y can have for real values of p is the required one.
(28) The distance v of the geometrical focus from the lens after refraction through the lens is given by the equation

$$
\frac{1}{v}-\frac{1}{d}=\frac{\mu^{\prime}-\mu}{r}
$$

Also if y be the distance from the axis of the point where the ray cuts the lens, and θ the inclination of refracted ray to the axis, $\frac{y}{v}=\tan \theta, \quad \frac{y}{d}=\tan \epsilon ; \quad \therefore y\left(\frac{1}{v}-\frac{1}{d}\right)=\tan \theta-\tan \epsilon=\theta-\epsilon$, nearly ; \therefore deviation $=y \cdot \frac{\mu^{\prime}-\mu}{r}=\left(\mu^{\prime}-\mu\right) \frac{d \tan \epsilon}{. r}$.
(29) The equation giving the distance of the focus of the emergent pencil behind the centre of the sphere is

$$
\frac{\mu}{t}-\frac{\mu}{v}=-\frac{\mu-1}{2 t}
$$

whence $v=\frac{2 \mu t}{3 \mu-1}$ and $t-v=\frac{\mu-1}{3 \mu-1}$. .
(30) Take the point O as centre of reference and calculate separately $O Q_{1}$, $O Q_{2}, O Q_{3}$.

CHAPTER VII.

(1) 71 times.
(2) $1 \frac{1}{2} \mathrm{ft} .4$.
(3) In one position the image is real and inverted, in the other, erect and virtual. The distances of the two positions from the lens are $\frac{f(m-1)}{m}$ and $\frac{f(1+m)}{m}$ respectively, since $v= \pm m u$ for the two positions respectively.
(4) $v=20 u$ and $\frac{1}{v}+\frac{1}{u}=\frac{1}{f} ; \therefore v=21 f$.
(5) See solution of (6) and Art. 79.
(6) Let f_{1}, f_{2} be the focal lengths of the two new lenses, and let u_{1}, u_{2}, u_{3} be the distances from the middle lens of the foci after refraction through each lens;

$$
\therefore \frac{1}{u_{1}-f}-\frac{1}{f}=\frac{1}{f_{1}}, \frac{1}{u_{3}}-\frac{1}{u_{1}}=-\frac{1}{f}, \frac{1}{u_{3}+f}-\frac{1}{u_{9}+f}=\frac{1}{f_{9}} .
$$

Also by the condition of the question $u_{3}=-2 f$, whence $u_{1}=\frac{f^{2}+2 f f_{1}}{f+f_{1}}, u_{8}=-\frac{f^{2}+2 f f_{2}}{f+f_{2}}$, whence by substitution in the middle equation and reducing, $f+f_{1}+f_{2}=0$.
(7) If u be the distance of the eye from the lens, the first image is at a distance $\frac{f u}{u-f}$ behind the lens. The image formed by reflection at the plane mirror is therefore at a distance $2 b-\frac{f u}{u-f}$ from the lens, and if this $=f$, the thing required is done, whence $u=\frac{f(2 b-f)}{2(b-f)}$.
(8) The focal length of the lens must be 2 feet; radius of curved surface $=1$ foot.
(9) Let a be distance between the luminous object and the screen, and x the distance of lens from the screen; $\therefore \frac{1}{x}+\frac{1}{a-x}=\frac{1}{f}$, which is a quadratic in x; and if x_{1}, x_{8} be the two roots, $x_{1}+x_{2}=a ; \therefore x_{1}=a-x_{2}, x_{2}=a-x_{1}$, but

$$
m_{1}=\frac{x_{1}}{a-x_{1}}, m_{2}=\frac{x_{2}}{a-x_{2}}=\frac{a-x_{1}}{x_{1}}=\frac{1}{m_{1}} .
$$

$$
\begin{equation*}
\frac{1}{v}+\frac{1}{u}=\frac{1}{f} ; \therefore \frac{1}{v}+\frac{2}{3 f}=\frac{1}{f} ; \therefore v=3 f ; \quad \therefore \frac{v}{u}=2 . \tag{10}
\end{equation*}
$$

Similarly in the second case $\frac{v}{u}=\frac{1}{2}$.
(11) The distance of the image formed by the plane mirror from the lens $=2 f$, and its size the same as that of the image formed by the lens. Hence the distance of the image again formed by the lens will be $2 f$, and of equal size with that formed by the plane mirror.
(12) and (14) The successive refractions must be traced as in previous examples.
(13) If u be the distance of the object from the lens and f the focal length, $\frac{1}{u}-\frac{1}{8}=\frac{1}{f} ; \therefore \frac{8}{u}=1+\frac{8}{f}=$ magnifying power.

Hence if f_{1}, f_{2} be the focal lengths of the two component lenses,

$$
1+\frac{8}{f_{1}}: 1+\frac{8}{f_{2}}:: 1+8\left(\frac{1}{f_{1}}+\frac{1}{f_{2}}\right):: 3: 4: 5,
$$

whence $f_{1}=16, f_{2}=8$.

CHAPTER VIII.

(1) $\frac{3}{4}$ inch. (2) The image of the rod is at a distance $\frac{1800}{89}$ inches from the object-glass, and the length of rod visible is $\frac{18779}{3778}$ feet. (3) See Ex. 17, Chap. VI.
(4) The distance of the image of the object-glass formed by the eye-piece from the eye-piece is $\frac{f_{c}\left(f_{0}+f_{e}\right)}{f_{0}}$, whence the ratio of its diameter to that of the object-glass is $\frac{f_{e}}{f_{0}}$. (5) If in the figure of Art. 103, A denote the centre of the small mirror, we have $\frac{1}{q^{\prime} A}+\frac{1}{d}=\frac{1}{F}$, and the magnifying power

$$
=\frac{O^{\prime} q^{\prime}}{O^{\prime} q} \cdot \frac{O q}{f}=\frac{A q^{\prime}}{A q^{\prime}-F^{\prime}} \cdot \frac{F}{f}=\frac{d}{f} .
$$

(6) See Examples 17 and 18 of Chap. VI.
(7) Let F be the focal length of the object-glass, and let x be the distance of the principal focus of the object-glass from the eye-glass. Then $\frac{F}{x}$ is the magnifying power. Also, if c be the diameter of the image formed by the object-glass,

$$
\frac{c}{2 F}=\tan \frac{a}{2} \text {, and } \frac{c}{x}=\frac{a}{d} ; \therefore \frac{F}{x}=\frac{a \cot \frac{a}{2}}{2 d} .
$$

(8) The distance between the lenses is $\left(\frac{289}{288}-\frac{1}{12}\right)$ feet, or $11 \frac{1}{24}$ inches. Hence the inverted image of the sun formed by the object-glass is at a distance $\frac{23}{24}$ inches from the eye-glass, which will form an image of this, also inverted, at a distance of 23 inches from the lens. By similar triangles the diameter of this image is about $2 \frac{2}{5}$ inches.
(9) Angular diameter of field of view $=\frac{7}{3856}$.
(11) Magnifying power $=\frac{f_{0}\left(a+f_{e}\right)}{a f_{e}}$: field of view

$$
=\frac{f_{0} y_{e}\left(a+f_{c}\right)-a f_{e} y_{0}}{a f_{e}+\left(a+f_{e}\right) f_{0}} .
$$

(12) See Example 14, Chapter VII, for the effect of the first three lenses. The distance of the eye lens from the object-glass is $41 \frac{1}{2}$ inches, and the magnifying power is $\frac{80}{3}$.
(13) The image formed by the object-glass is shifted to a distance $\frac{F f_{1}}{F+f_{1}}$ from the object-glass, and hence is at a distance $F+f-\frac{F f_{1}}{F+f_{1}}=\frac{F^{2}+f\left(F+f_{1}\right)}{F+f_{1}}$ from the field-lens. Hence if x be the focal length of the required concave lens placed in contact with it, we have

$$
\frac{3}{4 f}-\frac{F+f_{1}}{F^{2}+f\left(F^{\prime}+f_{1}\right)}=-\frac{1}{4 f}+\frac{1}{x} ; \therefore x=f\left\{1+\frac{f}{F^{2}}\left(F+f_{1}\right)\right\} .
$$

The magnifying power $=\frac{F f_{1}}{3\left\{F^{2}+f\left(F^{\prime}+f_{1}\right)\right\}}$.
(14) $F=8$ in. and $f=\frac{1}{2}$ in. Magnifying power as a microscope is 8 times.
(15) From the data we easily get by Arts. 89, 99, if y_{1}, y_{3} are the $\frac{1}{2}$ breadths of the eye-glasses, radius of stop

$$
=\frac{f_{0} y_{1}-f_{e} y_{0}}{f_{e}+f_{0}}=\frac{f_{e} y_{0}-f_{0} y_{3}}{f_{0}-f_{e}}=\frac{f_{0}\left(y_{1}-y_{3}\right)}{2 f_{0}}=\frac{y_{1}-y_{2}}{2} .
$$

(16) In the figure to Art. 93,

$$
E q=\frac{1}{2} f \text { if } E q^{\prime}=f ; \therefore E O=F+\frac{1}{2} f .
$$

(17) In the figure of Art. 76, if the angles $P Q E$ and $E Q K$ are equal, we get $H R=H E$, or approximately $H B=H E$; whence since

$$
\frac{1}{B H}-\frac{1}{B E}=\frac{1}{f_{\mathrm{z}}}, \quad B E=f_{\mathrm{z}}=a+f_{1} .
$$

(18) If x and v be the distances from the first lens of the image formed by the object-glass and first lens respectively, we have by the refractions through the two lenses

$$
\frac{1}{v}-\frac{1}{x}=\frac{1}{f}, \frac{1}{2 a-v}-\frac{1}{2 a-x}=\frac{1}{f},
$$

whence, eliminating v,

$$
(a-f)\left(x^{2}-2 a x\right)-2 a^{2} f=0 .
$$

The magnifying power is altered in the ratio $\frac{v}{x} \cdot \frac{x-2 a}{2 a-v}$, which easily reduces to $\frac{x-2 a-f}{x+f}$ or $\left(\frac{x-2 a}{x}\right)^{2}$; the power is thus diminished.
(19). Taking the figure of Art. 92, the magnifying power is measured by the fraction

$$
\frac{p^{\prime} q^{\prime}}{E q^{\prime}} \div \frac{p q}{F}=\frac{F}{E q^{\prime}} \cdot \frac{p^{\prime} q^{\prime}}{p q}=\frac{F}{E q^{\prime}} \cdot \frac{F q^{\prime}}{F q}
$$

But by the question if f^{\prime} be focal length of either lens,

$$
\frac{1}{\Delta}-\frac{1}{E q^{\prime}}=-\frac{1}{f^{\prime}}
$$

therefore $E q^{\prime}=\frac{f^{\prime} \Delta}{f^{\prime}+\Delta}$, and $F q^{\prime}=E q^{\prime}-\frac{2}{3} f^{\prime}=\frac{f^{\prime}}{3} \cdot \frac{\Delta-2 f^{\prime}}{f^{\prime}+\Delta}$.
Also $\frac{1}{F q}-\frac{1}{F q^{\prime}}=\frac{1}{f^{\prime}}$, therefore $F q=f^{\prime} \cdot \frac{\Delta-2 f^{\prime}}{4 \Delta+f^{\prime}}$.
Hence magnifying power

$$
=\frac{F\left(f^{\prime}+\Delta\right)}{f^{\prime} \Delta} \cdot \frac{4 \Delta+f^{\prime}}{3\left(f^{\prime}+\Delta\right)}=\frac{F\left(4 \Delta+f^{\prime}\right)}{3 f^{\prime} \Delta} .
$$

But $f=\frac{3 f^{\prime}}{4}$ (Ex. 17, Chap. VI.). Hence this $=\frac{F}{f}+\frac{F}{3 \Delta}$.

CHAPTER IX.

(1) In the former.
(2) At the primary.
(3) The length of the spectrum is proportional to $\tan D_{\bullet}-\tan D_{r}$

$$
=\frac{\sin \left(D_{v}-D_{r}\right)}{\cos D_{v} \cos D_{r}}=\frac{\left(\mu_{v}-\mu_{r}\right) \sin i}{\cos \phi^{\prime} \cos \psi \cos ^{2} D} \text { approx. (Art. 111). }
$$

(4) $\frac{2}{43}$.
(5) $\frac{2}{107}, 43$ to 107 .
(6) $\frac{1}{v_{r}}-\frac{1}{v_{v}}=\frac{w}{f}$ (Art. 117); $\therefore v_{v}-v_{r}=\frac{\pi v^{2}}{f}$ approx.
(7) $0 \cdot 108$ feet. (8) The dispersive powers calculated respectively from the 1st and 2nd rays, and from the 2 nd and 3 rd, are for the first medium $\frac{14}{635}$ and $\frac{18}{651}$, and for the second $\frac{8}{529}$ and $\frac{8}{537}$.
(9) Use the result of Art. 111, remembering that $i=2 \phi^{\prime}$ and $\phi=\psi$.

CHAPTER X.

(1) 185,760 miles per second.
(2) $1: 1 \mathrm{~S}$.
(3) First suppose the angle $P S Q$ very small, and let $S Y$ be the perpendicular on the chord $P Q$, which is ultimately the tangent at P. Then the illumination of the $\operatorname{arc} P Q$ $=\frac{C}{S P^{2}} \sin S P Y \times \operatorname{arc} P Q$. But $S Y \times \operatorname{arc} P Q=S P^{2} . \angle P S Q$ ultimately. Hence the illumination of the $\operatorname{arc} P Q=\frac{C}{S P} . \angle P S Q$, and the sum of the illuminations on the two $\operatorname{arcs} P Q$ and $p q$

$$
=C\left(\frac{1}{S P}+\frac{1}{S^{\prime} p}\right) \cdot \angle P S Q=\frac{2 C}{\frac{1}{2} \text { latus rectum }} . \angle P S Q .
$$

Whence the result will follow by summation for a finite angle. The whole illumination $=\frac{2 \pi C}{l}$.
(4) Use Art. 135 and the last example.
(5) The point at which each of the sides subtends an angle of 120°. The triangle must have no angle greater than 120°.
(6) The portion of the paraboloid which illuminates the plane is that included between the tangent cone to the surface drawn from the point where the plane meets the axis. The projection of the portion of the sphere (Art. 134) will be a circle.
(7) The portion of the sphere whose projection we require is a lune, and the projection of the curved surface is the same as that of the two plane semicircles which cut off the lune.
A. G. O.
(8) Use Art. 134. The projection of the portion of the sphere required will be the difference between the sector of the circle on the floor and the projection of a sector of another circle. If $2 a$ be the width, and h the height of the window, and c the distance from the window of the point on the floor, the illumination varies as

$$
\left\{\tan ^{-1} \frac{a}{c}-\frac{c}{\sqrt{c^{2}+h^{3}}} \tan ^{-1} \frac{a}{\sqrt{c^{2}+h^{2}}}\right\}
$$

(9) At the centre of similitude of the two spheres. (10) The algebraical sum of the perpendiculars from the three angular points of the triangle on any plane through the centre vanishes. (11) Use Art. 134.
(12) With the luminous point as centre describe a sphere. The illumination of the hollow cone will be proportional to the sum or difference of the two zones of the sphere cut off by a plane perpendicular to the axis, and the two cones whose vertices are the luminous point and bases the two circular ends of the cone.
(13) The illumination produced at any point by one of the rectangles varies as the angle subtended at the point by the base of the rectangle (Art. 134).
(14) If m be the linear magnifying power

$$
\frac{\text { apparent size of image }}{\text { apparent size of object }}=m^{2} \text {. }
$$

But

$$
\frac{\text { total light from image }}{\text { total light from object }}=\frac{(25)^{2}}{\left(\frac{1}{4}\right)^{8}}=10000
$$

Therefore

$$
\frac{\text { brightness of image }}{\text { brightness of object }}=\frac{10000}{m^{2}} .
$$

Hence m must not exceed 100 if the image is to be as bright as the object.

CHAPTER XI.

(1) Take the value of $\cos \phi$ in Art. 140, and the values of v_{1} and v_{2} in Art. 46, putting $u=\infty$. (2) By Art. $144 \sin \frac{\beta}{2}=\sin \left(3 \phi^{\prime}-\phi\right)$, which reduces to $8 \sin ^{3} \phi^{\prime} \cos \phi$. (3) No. The angular radius of the bow for mean rays would be zero, and the bow would reduce to a small circle just opposite the sun, the rings of it consisting of
the colours for which the refractive index is less than 2 , the red being outermost. (4) $\frac{3}{4}$ inch. See Art. 63 . (5) Trace the refractions through the several lenses in succession. (6) The image of the point must be formed at the point dividing the distance between the point and the lens in the ratio p to q.
(7) From the law of reflection it will easily be seen that the projections of each ray and its reflected ray on the base of the cylinder make equal angles with the radius of the cylinder at the point of incidence. All these projections are consequently equidistant from the centre of the base and all lie outside a circle whose radius is their common distance from the centre. Refraction at a horizontal surface will not alter the position of the projection on the base. This circle will vanish if the plane through the axis of the cylinder and the sun pass through any portion of the hole.
(8) The mirror must be in the direction of the line joining the point of intersection of $S Q$ and $H P$ with the point of intersection of the tangents at P and Q.
(9) $\mu_{r} \sin \phi_{r}=\mu_{r+1} \sin \left(\phi_{r}+\alpha\right)$ and $\mu_{r} \sin \phi_{r}=\mu_{r-1} \sin \left(\phi_{r}-\alpha\right)$, eliminating ϕ_{r} the result follows. (10) The rays alternately pass through the focus and are parallel to the axis.
(11) Compare Ex. 12, Chap. VI. (12) If ϕ be the angle of incidence and reflection, $P Q=P Q^{\prime}=2 r \cos \phi$, and

$$
\frac{1}{P q}+\frac{1}{P Q}=\frac{2}{r \cos \phi} ; \therefore P q=\frac{2 r \cos \phi}{3} ; \therefore P Q^{\prime}=3 P q .
$$

(13) If ϕ be the angle of incidence the deviation is $2\left(\phi^{\prime}-\phi\right)$. This is greatest when ϕ is the critical angle a, and then it $=\pi-2 \alpha$. Hence $\theta=\pi-2 \alpha ; \therefore \alpha=\frac{\phi-\theta}{2} ; \therefore \sin \alpha=\frac{1}{\mu}=\cos \frac{\theta}{2}$. (14) The sum of one set of alternate angles of the polygon is equal to that of the other, and any angle of the polygon is equal to the sum of the angle of reflection at one of the sides containing it, and that of incidence on the other. Whence we can prove that the angle of incidence on the first side again equals the angle at which the ray originally started from it.
(15) Calculate the positions of the successive images and their relative sizes, referring all distances to the centre of the sphere.

Cambrioge:

PRINTED BY J. \& C. F. CLAY,
AT THE UNIVERSITY PRESS.

CLASSIFIED CATALOGUE

 OF
EDUCATIONAL WORKS

PUBLISHED BY
GEORGE BELL छ๑ SONS

LONDON: YORK STREET, COVENT GARDEN NEW YORK: 66, FIFTH AVENUE; AND BOMBAY CAMBRIDGE: DEIGHTON, BELL \& CO.

CONTENTS.

GREEK AND LATIN CLASSICS:Annotated and Critical Editions 3
Texts 9
Translations 10
Grammar and Composition 15
History, Geography, and Reference Books, etc. 18
MATHEMATICS :
Arithmetic and Algebra 19
Book-kebping 20
Geometry and Euclid $2 I$
Analytical Geometry, etc. 21
Trigonometry 22
Mechanics and Natural Philosophy 22
MODERN LANGUAGES :
English 24
French Class Books 29
French Annotatrd Editions 31
German Class Books 31
German Annotated Editions 32
Italian 34
Bell's Modern Translations 34
SCIENCE, TECHNOLOGY, AND ART:
Chemistry 34
Botany 35
Geology 35
Medicine 36
Bell's Agricultural Series 3^{6}
Technological Handbooks. 37
Music 37
Art 3^{8}
MENTAL, MORAL, AND SOCIAL SCIENCES :
Psychology and Ethics 39
History of Philosophy 40
Law and Political Economy 40
History 41
Divinity, etc. 42
Summary of Series 45

GREEK AND LATIN CLASSICS.

ANNOTATED AND CRITICAL EDITIONS.

AESCHYLUS. Edited by F. A. PALEY, M.A., LL.D., late Classical Exa miner to the University of London. $4^{\text {th }}$ edition, revised. 8vo, 8s.
[Bib. Class.

- Edited by F. A. Paley, M. A., Ll.D. 6 vols. Fcap. 8vo, Is. $6 d$.
[Camb. Texts with Notes.
Agamemnon.
Choephoroe. Eumenides.

Persae.

Prometheus Ninctus.
Septem contra Thebas.

ARISTOPHANIS Comoediae quae supersunt cum perditarum fragmentis tertiis curis, recognovit additis adnotatione critica, summariis, descriptione metrica, onomastico lexico hubertus A. holden, ll.d. [late Fellow of Trinity College, Cambridge]. Demy 8 vo .

Vol. I., containing the Text expurgated, with Summaries and Critical Notes, $18 s$.

The Plays sold separately :
Acharnenses, $2 s$.
Equites, Is. $6 d$.
Nubes, $2 s$.
Vespae, $2 s$.
Pax, $2 s$.
Vol. II. Onomasticon Aristophaneum continens indicem geographicum et historicum. $5 s .6 d$.

- The Peace. A revised Text with English Notes and a Preface. By F. A. Paley, M.A., Ll.D. Post 8vo, 2s. 6d. [Pub. Sch. Ser.
- The Acharnians. A revised Text with English Notes and a Preface. By f. A. Paley, m.A., ll.d. Post 8 vo , $2 s .6 d$. [Pub. Sch. Ser.
- The Frogs. A revised Text with English Notes and a Preface. By F. A. paley, M. A., ll.d. Post 8vo, 2s. $6 d$.
[Pub. Sch. Ser.
CAESAR De Bello Gallico. Edited by george long, m.a. New edition. Fcap. 8vo, 4 s.

Or in parts, Books I.-III., Is. $6 d$. ; Books IV. and V., Is. $6 d_{.}$; Books VI. and VII., Is. 6d. [Gram. Sch. Class.

- De Bello Gallico. Book I. Edited by george long, M.A. With Vocabulary by W. F. R. Shilleto, m.A. Is. 6d. [Lower Form Ser.
- De Bello Gajlico. Book II. Edited by george long, m.A. With Vocabulary by W. F. r. Shilleto, M.A. Fcap. 8vo, is. $6 d$.
[Lower Form Ser.
—De Bello Gallico. Book III. Edited by George long, M.A. With Vocabulary by w. F. R. Shilleto, M.A. Fcap. 8vo, is. $6 d$.
- Seventh Campaign in Gaul. B.C. 52. De Bello Gallico, Lib. VII. Edited with Notes, Excursus, and Table of Idioms, by Rev. w. Cookworthy compton, m.A., Head Master of Dover College. With Illustrations from Sketches by E. T. COMPTON, Maps and Plans. 2nd edition. Crown 8vo, 2s. 6d. net.
"A really admirable class book."-Spectator.
"One of the most original and interesting books which have been published in late years as aids to the study of classical literature. I think

CAESAR-continued.
it gives the student a new idea of the way in which a classical book may be made a living reality."-Rev. J. E. C. Welldon, Harrow.

- Easy Selections from the Helvetian War. Edited by A. m. m. stedman, m.A. With Introduction, Notes and Vocabulary. 18 mo , is.,
[Primary Classics.
CALPURNIUS SICULUS and M. AURELIUS OLYMPIUS NEMESIANUS. The Eclogues, with Introduction, Commentary, and Appendix. By C. H. Keene, m.A. Crown 8 vo, $6 s$.
CATULLUS, TIBULLUS, and PROPERTIUS. Selected Poems. Edited by the rev. a. h. wratislaw, late Head Master of Bury St. Edmunds School, and F. n. sutton, b.A. With Biographical Notices of the Poets. Fcap. 8vo, 2s. $6 d$.
[Gram. Sch. Class.
CICERO'S Orations. Edited by g. Long, m.A. 8vo, [Bib. Class. Vol. I.-In Verrem. $8 s$.
Vol. II.-Pro P. Quintio-Pro Sex. Roscio-Pro Q. Roscio-Pro M. Tullio-Pro M. Fonteio-Pro A. Caecina-De Imperio Cn. PompeiiPro A. Cluentio-De Lege Agraria-Pro C. Rabirio. 8s.

Vols. III. and IV. Out of print.

- De Senectute, De Amicitia, and Select Epistles. Edited by georger long, M.A. New edition. Fcap. 8vo, 3s. [Gram. Sch. Class.
- De Amicitia. Edited by george long, m.a. Fcap. 8vo, is. $6 d$.
[Camb. Texts with Notes.
- De Senectute. Edited by george long, m. A. Fcap. 8vo, is. $6 d$. [Camb. Texi, with Nstes.
- Epistolae Selectae. Edited by grorge long, M.A. Fapp. 8vo, is. 6d. [Camb. Texts with Notes.
- The Letters to Atticus. Book I. With Notes, and an Essay on the Character of the Writer. By A. pretor, m. A., late of Trinity College, Fellow of St. Catherine's College, Cambridge. $3^{\text {rd }}$ edition. Post 8 vo , 4s. $6 d$.
[Pub. Sch. Ser.
CORNELIUS NEPOS. Edited by the late rev. J. F. MACMICHAEL, Head Master of the Grammar School, Ripon. Fcap. 8vo, $2 s$.

DEMOSTHENES. Edited by R. whiston, m.A., late Head Master of Rochester Grammar School. 2 vols. 8vo, 8s. each. [Bib. Class.

Vol. I.-Olynthiacs-Philippics-De Pace-Halonnesus-Chersonese -Letter of Philip-Duties of the State-Symmoriae-Rhodians-Mega-lopolitans-Treaty with Alexander-Crown.

Vol. II.-Embassy - Leptines - Meidias - Androtion-Aristocrates-Timocrates-Aristogeiton.

- De Falsa Legatione. By the late r. shilleto, M.A., Fellow of St. Peter's College, Cambridge. 8 th edition. Post 8vo, 6s. [Pub. Sch. Ser.
- The Oration against the Law of Leptines. With English Notes. By the late b. w. beatson, m.a., Fellow of Pembroke College. 3 rd edition. Post $8 \mathrm{vo}, 3 \mathrm{~s} .6 \mathrm{~d}$.
EURIPIDES. By F. A. PALey, M.A., Ll.D. 3 vols. 2 nd edition, revised. $8 \mathrm{vo}, 8 \mathrm{~s}$. each. Vol. I. Out of print. [Bib. Class.

Vol. II.-Preface-Ion-Helena-Andromache-Electra-BacchaeHecuba. 2 Indexes.
Vol. III. - Preface - Hercules Furens-Phoenissae-Orestes-Iphigenia in Tauris-Iphigenia in Aulide-Cyclops. 2 Indexes,

EURIPIDES. Electra. Edited, with Introduction and Notes, by C. H. keene, m. A., Dublin, Ex-Scholar and Gold Medallist in Classics. Demy 8vo, ios. $6 d$.

- Edited by F. A. PAley, M.A., Ll.D. 13 vols. Fcap. 8vo, 1s. 6d. each.
[Camb. Texts with Notes.

Alcestis.
Medea.
Hippolytus.
Hecuba.
Bacchae.
Ion (2s.).
Orestes.

Phoenissae.
Troades.
Hercules Furens.
Andromache.
Iphigenia in Tauris. Supplices.

HERODOTUS. Edited by Rev. J. W. BLAKESLEY, B.D. 2 vols. 8vo, 12 s. [Bib. Class.

- Easy Selections from the Persian Wars. Edited by a. g. liddell, M.A. With Introduction, Notes, and Vocabulary. $18 \mathrm{mo}, 1 \mathrm{~s} .6 \mathrm{~d}$.
[Primary Classics.
HESIOD. Edited by F. A. Paley, M.A., Ll.D. 2nd edition, revised. 8vo, 5s. [Bih. Class.
HOMER. Edited by F. A. PALEY, M.A., LL.D. 2 vols. 2 nue edition, revised. 14s. Vol. II. (Books XIII.-XXIV.) may be had separately. 6s. [Bib. Class.
- Iliad. Books I.-XII. Edited by F. A. Paley, m.A., Ll.d. Fcap. 8vo, 4s. $6 d$.

Also in 2 Parts. Books I.-VI. 2s. 6d. Books VII.-XII. 2s. $6 d$.
[Gram. Sch. Class.

- Iliad. Book I. Edited by F. A. paley, M.A., ll.d. Fcap. 8vo, Is.
[Camb. Text with Notes.
HORACE. Edited by rev. A. J. MACLEANE, M.A. $4^{\text {th }}$ edition, revised by GEORGE LONG. 8vo, 8 s .
[Bib. Class.
- Edited by A. J. Macleane, M. A. With a short Life. Fcap. 8vo, 3s. 6d. Or, Part I., Odes, Carmen Seculare, and Epodes, 2 s.; Part II., Satires, Epistles, and Art of Poctry, $2 s$.
- Odes. Book I. Edited by A. J. macleane, m.A. With a Vocabulary by A. H. Dennis, M.A. Fcap. 8 vo , 1s. $6 d$.
[Lower Form Ser.
JUVENAL: Sixteen Satires (expurgated). By HERMAN PRIOR, M.A., late Scholar of Trinity College, Oxford. Fcap. 8vo, 3s. 6d.
[Gram. Sch. Class.
LIVY. The first five Books, with English Notes. By J. Prendeville. A new edition revised throughout, and the notes in great part re-written, by J. H. FREESE, M.A., late Fellow of St. John's College, Cambridge. Books I. II. III. IV. V. With Maps and Introductions. Fcap. 8vo, 1s. 6 d . each.
- Book VI. Edited by e. S. weymouth, M. A., Lond., and G. F. Hamilton, b.A. With Historical Introduction, Life of Livy, Notes, Examination Questions, Dictionary of Proper Names, and Map. Crown 8vo, 2s. 6d.
- Book XXI. By the Rev. L. D. Dowdall, m.A., late Scholar and University Student of Trinity College, Dublin, B.D., Ch. Ch. Oxon. Post 3vo, $2 s$.
[Pub. Sch. Ser.
- Book XXII. Edited by the REv. L. D. DOWDALl, M.A., B. D. Post 8vo, $2 s$.
[Pub. Sck. Ser.

LIVY. Easy Selections from the Kings of Rome. Edited by A. m. m. stedman, m.A. With Introduction, Notes, and Vocabulary. 18 mo , 1s. 6 d .
[Primary Class.
LUCAN. The Pharsalia. By c. e. haskins, m. A., Fellow of St. John's College, Cambridge, with an Introduction by w. E. Heitland, M. A., Fellow and Tutor of St. John's College, Cambridge. 8vo, 14 s.
LUCRETIUS. Titi Lucreti Cari De Rerum Natura Libri Sex. By the late H. A. J. MUNRO, M.A., Fellow of Trinity College, Cambridge. $4^{\text {th }}$ edition, finally revised. 3 vols. Demy 8vo. Vols. I., II., Introduction, Text, and Notes, I8s. Vol. III., Translation, $6 s$.
MARTIAL: Select Epigrams. Edited by F. A. Paley, m.a., Ll.D., and the late W. H. Stone, Scholar of Trinity College, Cambridge. With a Life of the Poet. Fcap. $8 \mathrm{vo}, 4 \mathrm{~s} .6 \mathrm{~d}$. [Gram. Sch. Class.
OVID: Fasti. Edited by F. A. paley, M.A., ll.D. Second edition. Fcap. 8vo, 3s. 6d.
[Gram. Sch. Class. Or in 3 vols, Is. 6d. each [Grammar School Classics], or 2s. each [Camb. Texts with Notes], Books I. and II., Books III. and IV., Books V. and VI.

- Selections from the Amores, Tristia, Heroides, and Metamorphoses. By A. J. macleane, m. A. Fcap. 8vo, is. $6 d$.
[Camb. Texts with Notes.
Ars Amatoria et Amores. A School Edition. Carefully Revised and Edited, with some Literary Notes, by J. herbert williams, m.a., late Demy of Magdalen College, Oxford. Fcap. 8vo, 3s. $6 d$.
Heroides XIV. Edited, with Introductory Preface and English Notes, by arthur palmer, m.A., Professor of Latin at Trinity College, Dublin. Demy 8vo, 6 s .
- Metamorphoses, Book XIII. A School Edition. With Introduction and Notes, by charles haines keene, M.A., Dublin, Ex-Scholar and Gold Medallist in Classics. 3 rd edition. Fcap. 8vo, 2s. $6 d$.
- Epistolarum ex Ponto Liber Primus. With Introduction and Notes, by charles haines keene, m.a. Crown 8 vo , 3 s.
PLATO. The Apology of Socrates and Crito. With Notes, critical and exegetical, by wilhelm wagner, ph.d. i2th edition. Post 8 vo , 3s. 6d. A Cheap Edition. Limp Cloth. 2s. 6d. [Pub. Sch. Ser.
- Phaedo. With Notes, critical and exegetical, and an Analysis, by wilhelm wagner, ph.d. ioth edition. Post 8 vo , 5s. 6 d . [Pub. Sch. Ser.
- Protagoras. The Greek Text revised, with an Analysis and English Notes, by w. wayte, m.a., Classical Examiner at University College, London. 7 th edition. Post 8vo, 4s. 6d. [Pub. Sch. Ser.
- Euthyphro. With Notes and Introduction by G. H. Wells, M.A., Scholar of St. John's College, Oxford ; Assistant Master at Merchant Taylors' School. 3 rd edition. Post 8vo, 3 s. [Pub. Sch. Ser.
- The Republic. Books I. and II. With Notes and Introduction by G. H. Wells, m.A. $4^{\text {th }}$ edition, with the Introduction re-written. Post $8 \mathrm{vo}, 5$.
[Pub. Sch. Ser.
- Euthydemus. With Notes and Introduction by G. H. WELLS, M.A. Post $8 \mathrm{vo}, 4 \mathrm{~s}$.
[Pub. Sch. Ser.
- Phaedrus. By the late w. H. phompson, D. D., Master of Trinity College, Cambridge. 8vo, 5 s.
[Bib. Class.
- Gorgias. By the late w. h. thompson, d.d., Master of Trinity College, Cambridge. New edition. 6s.
[Pub. Sch. Ser.

PLAUTUS. Aulularia. With Notes, critical and exegetical, by w. wagner, ph.d. $5^{\text {th }}$ edition. Post $8 \mathrm{vo}, 4 \mathrm{~s} .6 \mathrm{~d}$. [Pub. Sch. Ser.

- Trinummus. With Notes, critical and exegetical, by wilhelm wagner, ph.d. $5^{\text {th }}$ edition. Post 8 vo , 45. 6d. [Pub. Sch. Ser.
- Menaechmei. With Notes, critical and exegetical, by wilhelm wagner, ph.d. $2 n d$ edition. Post 8 vo , 4s. 6d. [Pub. Sch. Ser.
- Mostellaria. By e. A. Sonnenschein, m.a., Professor of Classics at Mason College, Birmingham. Post 8vo, 5 s. [Pub. Sch. Ser.
- Captivi. Abridged and Edited for the Use of Schools. With Introduction and Notes by J. fr. freese, m. A., formerly Fellow of St. John's College, Cambridge. Fcap. 8vo, is. 6 d .
PROPERTIUS. Sex. Aurelii Propertii Carmina. The Elegies of Propertius, with English Notes. By F. A. paley, M.A., ll.d. $2 n d$ edition. $8 \mathrm{vo}, 5$ s.
SALLUST: Catilina and Jugurtha. Edited, with Notes, by the iate george long. New edition, revised, with the addition of the Chief Fragments of the Histories, by J. G. frazer, m.a., Fellow of Trinity College, Cambridge. Fcap. 8vo, 3s. 6d., or separately, 2s. each.

SOPHOCLES. Edited by rev. f. h. blaydes, m.a. Vol. I. Oedipus Tyrannus-Oedipus Coloneus-Antigone. 8vo, 8 s . [Bib. Class. Vol. II. Philoctetes-Electra-Trachiniae-Ajax. By F. A. Paley, M.A., Ll.D. $8 \mathrm{vo}, 6 \mathrm{~s}$., or the four Plays separately in limp cloth, 2 s . 6 d . each.

- Trachiniae. With Notes and Prolegomena. By alfred pretor, m.A., Fellow of St. Catherine's College, Cambridge. Post $8 \mathrm{vo}, 45.6 \mathrm{~d}$.
[Pub. Sch. Ser.
- The Oedipus Tyrannus of Sophocles. By b. h. kennedy, d.d., Regius Professor of Greek and Hon. Fellow of St. John's College, Cambridge. With a Commentary containing a large number of Notes selected from the MS. of the late T. h. steel, M.a. Crown $8 \mathrm{vo}, 8 \mathrm{~s}$.
- A School Edition Post 8vo, 2s. 6d. - [Pub. Sch. Ser.
- Edited by F. A. paley, m. A., ll.d. 5 vols. Fcap. 8vo, is. 6d. each.
[Camb. Texts with Notes.

Oedipus Tyrannus. Oedipus Coloneus. Antigone.

Electra.
Ajax.

TACITUS: Germania and Agricola. Edited by the late rev. p. FROST, late Fellow of St. John's College, Cambridge. Fcap. 8vo, 2s. 6 d .
[Gram. Sch. Class.

- The Germania. Edited, with Introduction and Notes, by R. F. Davis, M.A. Fcap. 8vo, Is. $6 d$.

TERENCE. With Notes, critical and explanatory, by wilhelm wagner, PH.D. $3^{\text {rd }}$ edition. Post $8 \mathrm{vo}, 7$ s. $6 d$.

- Edited by wilhelm wagner, ph.d. 4 vols. Fcap. 8vo, is. 6d. each.
[Camb. Texts with Notes. Andria. Adelphi. Hautontimorumenos. Phormio.
THEOCRITUS. With short, critical and explanatory Latin Notes, by F. A. paley, M.A., li.. D. 2 nd edition, revised. Post 8vo, 4 s .6 d .
[Pub. Sch. Ser.

THUCYDIDES, Book VI. By T. w. Dovgan, M.A., Fellow of St. John's College, Cambridge ; Professor of Latin in Queen's College, Belfast. Edited with English notes. Post 8vo, $2 s$.
[Pub. Sch. Ser.

- The History of the Peloponnesian War. With Notes and a careful Collation of the two Cambridge Manuscripts, and of the Aldine and Juntine Editions. By the late richard shilleto, m.a., Fellow of St. Peter's College, Cambridge. Svo. Book I. $6 s$. 6d. Book II. 5s. $6 d$.
Virgil. By the late professor conington, m.a. Revised by the late professor nettleship, Corpus Professor of Latin at Oxford. 8vo.
[Bib. Class.
Vol. I. The Bucolics and Georgics, with new Memoir and three Essays on Virgil's Commentators, Text, and Critics. 4 th edition. Ios. 6 d .

Vol. II. The Aeneid, Books I.-VI. $4^{\text {th }}$ edition. Ios. 6 d .
Vol. III. The Aeneid, Books VII.-XII. $3^{\text {rd }}$ edition. 10 s. 6 d .

- Abridged from professor conington's Edition, by the rev. J. g. sheppard, d.c.l., h. nettleship, late Corpus Professor of Latin at the University of Oxford, and w. Wagner, Ph.d. 2 vols. Fcap. 8vo, 4s. 6d. each.
[Gram. Sch. Class.
Vol. I. Bucolics, Georgics, and Aeneid, Books I.-IV.
Vol. II. Aeneid, Books V.-XII.
Also the Bucolics and Georgics, in one vol. 3 s.
Or in 9 separate volumes (Grammar School Classics, with Notes at foot of page), price Is. 6d. each.

Bucolics.
Georgics, I. and II.
Georgics, III. and IV.
Aeneid, I. and II.
Aeneid, III. and IV.

Aeneid, V. and VI.
Aeneid, VII. and VIII.
Aeneid, IX. and X.
Aeneid, XI. and XII.

Or in 12 separate volumes (Cambridge Texts with Notes at end), price is. 6d. each.

Bucolics.

Georgics, I. and II.
Georgics, III. and IV.
Aeneid, I. and II.
Aeneid, III. and IV.
Aeneid, V. and VI. (price $2 s$. .)

Aeneid, VII.
Aeneid, VIII.
Aeneid, IX.
Aeneid, X .
Aeneid, XI.
Aeneid, XII.

Aeneid, Book I. coningron's Edition abridged. With Vocabulary by w. F. R. shilleto, m.A. Fcap. 8vo, is. 6d. [Lower Form Ser.
XENOPHON : Anabasis. With Life, Itinerary, Index, and three Maps. E.dited by the late J. f. Macmichael. Revised edition. Fcap. 8vo, 3s. $6 d$.
[Gram. Sch. Class.
Or in 4 separate volumes, price 1 s. 6 d. each.
Book I. (with Life, Introduction, Itinerary, and three Maps)-Books II. and III.-Books IV. and V.-Books VI. and VII.

- Anabasis. macmichael's Edition, revised by J. x. melhuish, M.A., Assistant Master of St. Paul's School. In 6 volumes, fcap. 8vo. With Life, Itinerary, and Map to each volume, Is. 6 d. each.
[Camb. Texts with Notes.
Book I.-Books II. and III.-Book IV.-Book V.-Book VI.Book VII.

XEJIOPHON. Cyropaedia. Edited by g. m. gorham, m.a., late Fellow of Trinity College, Cambridge. New edition. Fcap. 8vo, 3s. 6d.
[Gram. Sch. Class.
Also Books I. and II., is. 6 d . ; Books V. and VI., Is. 6 d .

- Memorabilia. Edited by percival frost, m.a., late Fellow of St. John's College, Cambridge. Fcap. 8vo, 3s. [Gram. Sch. Class.
- Hellenica. Book I. Edited by L. D. Dowdall, m.A., b.d. Fcap. 8vo, 2s. [Camb. Texts with Notes.
- Hellenica. Book II. By l. d. dowdall, m.A., b.d. Fcap. dro, 2 s.
[Camb. Texts with Notes.

TEXTS.

AESCHYLUS. Ex novissima recensione F. A. paley, A.m., ll.d. Fcap. $8 \mathrm{vo}, 2 \mathrm{~s}$.
[Camb. Texts.
CAESAR De Bello Gallico. Recognovit g. long, A.m. Fcap. 8vo, Is. 6 d .
[Camb. Texts.
CATULLUS. A New Text, with Critical Notes and an Introduction, by J. p. postgate, m.a., litt.d., Fellow of Trinity College, Cambridge, Professor of Comparative Philology at the University of London. Wide fcap. $8 \mathrm{vo}, 3$.
CICERO De Senectute et de Amicitia, et Epistolae Selectae. Recensuit G. Long, A.m. Fcap. 8vo, is. 6 d .
CICERONIS Orationes in Verrem. Ex recensione g. LONG, A. Fcap. 8vo, 2s. $6 d$.

Ex recensione G. Long, A.m. [Camb. Texts.
CORPUS POETARUM LATINORUM, a se aliisque denuo recognitorum et brevi lectionum varietate instructorum, edidit JOHANNES PERCIval postgate. Tom. I.- Ennius, Lucretius, Catullus, Horratius, Vergilius, Tibullus, Propertius, Ovidius. Large post 4to, 2 Is. net. Also in 2 Parts, sewed, 9 s. each, net.
** To be completed in 4 parts, making 2 volumes.
CORPU*S POETARUM LATINORUM. Edited by WALKER. Containing :-Catullus, Lucretius, Virgilius, Tibullus, Propertius, Ovidins, Horatius, Phaedrus, Lucanus, Persius, Juvenalis, Martialis, Sulpicia, Statius, Silius Italicus, Valerius Flaccus, Calpurnius Siculus, Ausonius, and Claudianus. I vol. 8 vo , cloth, 18 s .
EURIPIDES. Ex recensione F. A. Paley, A.m., ll.d. 3 vols. Fcap. 8vo, 2s. each.
[Camb. Texts.
Vol. I. - Rhesus - Medea - Hippolytus - Alcestis - Heraclidae-Sup-plices-Troades.
Vol. II.-Ion-Helena-Andromache-Electra-Bacchae-Hecuba.
Vol. III.-Hercules Furens-Phoenissae-Orestes-Iphigenia in Tauris -Iphigenia in Aulide-Cyclops.
HERODOTUS. Recensuit j. G. blakrsley, s.t.b. 2 vols. Fcap. 8vo, 2s. 6d. each. [Camb. Texts.
homeri ilias I.-XiI. Ex novissima recensione f. A. paley, A.m., Ll.D. Fcap. 8vo, Is. $6 d$.
[Camb. Texts. horatius. Ex recensione a. J. macleane, a.m. Fcap. 8 vo , is. 6 d.
[Camb. Texts.
JUVENAL ET PERSIUS. Ex recensione A. J. Macleank, a.m. Fcap. 8vo, Is. 6d.
[Camb. Texts.

LUCRETIUS. Recognovit h. A. J. munro, A.m. Fcap. 8 vo , 2 s .
[Cam3. Texts.
PROPERTIUS. Sez. Propertii Elegiarum Libri IV. recensuit A. palmer, collegii sacrosanctae et individuae Trinitatis juxta Dublinum Socius. Fcap. 8vo, 3s. 6d.

- Sexti Properti Carmina. Recognovit joh. percival postgate, Large post 4 to, boards, 3 s . 6 d . net.
SALLU'STI CRISPI CATILINA ET JUGURTHA, Recognovit G. long, A.m. Fcap. 8vo, is. 6d. [Camb. Texts. SOPHOCLES. Ex recensione F. A. PAley, A.m., ll.d. Fcap. 8vo, $25.6 d$. [Camb. Texts. TERENTI COMOEDIAE. GUL. WAGNER relegit et ernendavit. Fcap. $8 \mathrm{vo}, 25$.
[Camb. Texts.
THUCYDIDES. Recensuit J. G. DONALDSON, s.T.p. 2 vols. Fcap. 8vo, 2s. each. [Camb. Texts.
VERGILIUS. Ex recensione J. Conington, A.m. Fcap. 8vo, 2 s .
[Camb. Texts.
XENOPHONTIS EXPEDITIO CYRI. Recensuit J. F. MACMICHAEL. ^. в. Fcap. 8 vo , is. 6.l.
[Camb. Texts.

TRANSLATIONS.

AESCHYLUS, The Tragedies cf. Translated into English verse by anNa swanwick. $4^{\text {th }}$ edition rei ised. Small post 8 vo , 5^{s}.

- The Tragedies of. Literally trans' ted into Prose, by t. A. buckley, b. A. Small post 8 vo , 3 s . 6 d .
- The Tragedies of. Translated 1 / walter headlam, m.A., Fellow of King's College, Cambridge.
[Preparing.
ANTONINUS (M. Aurelius), The Thoughts of. Translated by george long, M.A. Revised ecition. Small post 8 vo , 3 s .6 d .

Fine paper edition on handmade paper. Pott $8 \mathrm{vo}, 6$.
APOLLONIUS RHODIUS. The Argonautica. Translated by e. p. coleridge. Small post 8vo, 5 s.
AMMIANUS MARCELLINUS. History of Rome during the Reigns of Constantius, Julian, Jovianus, Valentinian, and Valens. Translated by Prof. c. D. Yonge, m.A. With a complete Index. Small post $8 \mathrm{vo}, 7 \mathrm{~s} .6 \mathrm{~d}$.
ARISTOPHANES, The Comedies of. Literally translated by w. J. hickie. With Portrait. 2 vols. Small post 8 vo , 5 s . each.

Vol. I.-Acharnians, Knights, Clouds, Wasps, Peace, and Birds.
Vol. II.-Lysistrata, Thesmophoriazusae, Frogs, Ecclesiazusae, and Plutus.

- The Acharnians. Translated by w. h. covington, b.A. With Memoir and Introduction. Crown 8vo, sewed, is.
ARISTOTLE on the Athenian Constitution. Translated, with Notes and Introduction, by f. g. kenyon, m.A., Fellow of Magdalen College, Oxford. Pott Svo, printed on handmade paper. 2nd edition. 4s. $6 d$.
- History of Animals. Translated by richard cresswent, m.a. Small post 8 vo, 5 S.s.

ARISTOTLE. Organon: or, Logical Treatises, and the Introduction of Porphyry. With Notes, Analysis, Introduction, and Index, by the Rev. o. f. owen, m.A. 2 vols. Small post 8 vo , 3s. 6 d . each.

- Rhetoric and Poetics. Literally Translated, with Hobbes' Analysis, \&c., by t. buckley, b.A. Small post 8 vo , 5 s.
- Nicomachean Ethics. Literally Translated, with Notes, an Analytical Introduction, \&c., by the Venerable archdeacon browne, late Classical Professor of King's College. Small post 8vo, 5 s.
- Politics and Economics. Translated, with Notes, Analyses, and Index, by e. walford, M.A., and an Introductory Essay and a Life by dr. gillies. Small post 8vo, 5 .
- Metaphysics. Literally Translated, with Notes, Analysis, \&c., by the rev. john h. m'mahon, m.a. Small post 8 vo , 5 s.
ARRIAN. Anabasis of Alexander, together with the Indica. Translated by e. J. chinnock, M.A., Ll.d. With Introduction, Notes, Maps, and Plans. Small post $8 \mathrm{vo}, 5$ s.
CAESAR. Commentaries on the Gallic and Civil Wars, with the Supplementary Books attributed to Hirtius, including the complete Alexandrian, African, and Spanish Wars. Translated by w. A. m’devitte, b.A. Small post 8 vo , 5 .
- Gallic War. Translated by w. A. m’devitte, B.A. 2 vols., with Memoir and Map. Crown 8vo, sewed. Books I. to IV., Books V. to VII., Is. each.
CALPURNIUS SICULUS, The Eclogues of. The Latin Text, with English Translation by e. J. L. scott, M.A. Crown 8vo, 3s. 6 d .
CATULLUS, TIBULLUS, and the Vigil of Venus. Prose Translation. Small post 8vo, 5 s.
CICERO, The Orations of. Translated by prof. c. D. Yonge, m.A. With Index. 4 vols. Small post 8 vo , 5 s . each.
- On Oratory and Orators. With Letters to Quintus and Brutus. Translated by the rev. J. S. watson, m.a. Small post 8 vo , 5 s .
- On the Nature of the Gods. Divination, Fate, Laws, a Republic, Consulship. Translated by prof. C. D. yonge, m.A., and francis barham. Small post 8 vo , 5 s.
- Academics, De Finibus, and Tusculan Questions. By Prof. c. d. yonge, m.A. Snall post $8 \mathrm{vo}, 5$.
- Offices; or, Moral Duties. Cato Major, an Essay on Old Age ; Laelius, an Essay on Friendship; Scipio's Dream ; Paradoxes; Letter to Quintus on Magistrates. Translated by c. r. edmonds. With Portrait, 3s. $6 d$.
- Old Age and Friendship. Translated, with Memoir and Notes, by G. H. welles, m.A. Crown 8 vo , sewed, is.

DEMOSTHENES, The Orations of. Translated, with Notes, Arguments, a Chronological Abstract, Appendices, and Index, by c. rann kennedy. 5 vols. Small post 8 vo .

Vol. I.-The Olynthiacs, Philippics. 3s. 6d.
Vol. II.-On the Crown and on the Embassy. 5 .
Vol. III.-Against Leptines, Midias, Androtion, and Aristocrates. 5s. Vols. IV. and V.-Private and Miscellaneous Orations. 5s. each.

- On the Crown. Translated by c. Rann kennedy. Crown 8vo, sewed, is.
DIOGENES LAERTIUS. Translated by frof. c. D. Yonge, m.a Small post Sro, 5 s.

EPICTETUS, The Discourses of. With the Encheiridion and Fragments. Translated by george long, m.a. Small post 8vo, 5 s. Fine Paper Edition, 2 vols. Pott 8 vo , 10 s. 6 d .
EURIPIDES. A Prose Translation, from the Text of Paley. By E. P. COLERIDGE, B.A. 2 vols., 5 s. each.

Vol. I.-Rhesus, Medea, Hippolytus, Alcestis, Heraclidæ, Supplices, Troades, Ion, Helena.

Vol. II.-Andromache, Electra, Bacchae, Hecuba, Hercules Furens, Phoenissae, Orestes, Iphigenia in Tauris, Iphigenia in Aulis, Cyclops.
** The plays separately (except Rhesus, Helena, Electra, Iphigenia in Aulis, and Cyclops). Crown 8vo, sewed, Is. each.

- Translated from the Text of Dindorf. By T. A. buckley, b.A. 2 vols. small post 8vo, 5s. each.
GREEK ANTHOLOGY. Translated by george burges, m.A. Small post $8 \mathrm{vo}, 55$.
HERODOTUS. Translated by the rev. henry cary, m.a. Small post 8 vo , 3 s .6 d .
- Analysis and Summary of. By J. т. wheeler. Small post 8vo, 5 s.

HESIOD, CALLIMACHUS, and THEOGNIS. Translated by the rev. J. banks, M.A. Small post 8vo, 5 .
HOMER. The Iliad. Translated by T. A. buckley, b.A. Small post $8 \mathrm{vo}, 5$.

- The Odyssey, Hymns, Epigrams, and Battle of the Frogs and Mice. Translated by T. A. Buckley, b.A. Small post 8 vo , 5 s.
- The Iliad. Books I.-IV. Translated into English Hexameter Verse, by henry smith wright, b.A., late Scholar of Trinity College, Cambridge. Medium 8vo, 5 s.
HORACE. Translated by Smart. Revised edition. By t. A. buckiey, B.A. Small post $8 \mathrm{vo}, 3$ s. $6 d$.
- The Odes and Carmen Saeculare. Translated into English Verse by the late john conington, m.a., Corpus Professor of Latin in the University of Oxford. 11th edition. Fcap. 8vo. 3s. 6 d .
- The Satires and Epistles. Translated into English Verse by Prof. john conington, m.a. 8 th edition. Fcap. $8 \mathrm{vo}, 3$ s. 6 d .
- Odes and Epodes. Translated by Sir stephen e. de vere, bart. 3 rd edition, enlarged. Imperial 16 mo .7 s .6 d . net.
ISOCRATES, The Orations of. Translated by J. h. freese, m.A., late Fellow of St. John's College, Cambridge, with Introductions and Notes. Vol. I. Small post 8 vo, 5 s.
JUSTIN, CORNELIUS NEPOS, and EUTROPIUS. Translated by the rev. J. S. Watson, m.A. Small post 8 vo , 5 s.
JUVENAL, PERSIUS, SULPICIA, and LUCILIUS. Translated by L. evans, m.a. Small post 8 vo , 5 s.
LIVY. The History of Rome. Translated by dr. spillan, c. edmonds, and others. 4 vols. small post 8 vo , 5 s. each.
- Books I., II., III., IV. A Revised Translation by J. H. freese, m.A., late Fellow of St. John's College, Cambridge. With Memoir, and Maps. 4 vols., crown 8 vo , sewed, is. each.
- Book V. and Book VI. A Revised Translation by e. s. weymouth, m.A., Lond. With Memoir, and Maps. Crown 8vo, sewed, is. each.
- Book IX. Translated by francis storr, b.a. With Memoir. Crown 8 vo , sewed, is.

LUCAN. The Pharsalia. Translated into Prose by h. T. riley. Small post 8 vo , 5 s.

- The Pharsalia. Book I. Translated by frederick conway, m.a. With Memoir and Introduction. Crown 8vo, sewed, is.
LUCIAN'S Dialogues of the Gods, of the Sea-Gods, and of the Dead. Translated by ho ward williams, m.a. Small post 8 vo , 5 s.
LUCRETIUS. Translated by the Rev. J. s. watson, M.A. Small post 8 vo , 5 s .
- Literally translated by the late H. A. J. MUNRO, M.A. 4th edition. Demy $8 \mathrm{vo}, 6 \mathrm{~s}$.
MARTIAL'S Epigrams, complete. Literally translated into Prose, with the addition of Verse Translations selected from the Works of English Poets, and other sources. Small post $8 \mathrm{vo}, 7 \mathrm{~s} .6 \mathrm{~d}$.
OVID, The Works of. Translated. 3 vols. Small post 8vo, 5s. each. Vol. I.-Fasti, Tristia, Pontic Epistles, Ibis, and Halieuticon.
Vol. II.-Metamorphoses. With Frontispiece.
Vol. III.-Heroides, Amours, Art of Love, Remedy of Love, and Minor Pieces. With Fronti:piece.
- Fasti. Translated by H. T. riley, b.A. 3 vols. Crown 8vo, sewed, is. each.
-Tristia. Translated by h. t. riley, b.A. Crown 8vo, sewed, is
PINDAR. Translated by dawson w. turner. Small post 8vo, 5 s.
PLATO. Gorgias. Translated by the late E. M. COPE, M.A., Fellow of Trinity College. 2nd edition. $8 \mathrm{vo}, 7 \mathrm{y}$.
- Philebus. Translated by F. A. paley, m.A., ll.d. Small 8vo, 4s.
- Theaetetus. Translated by f. A. paley, m.A., Ll. D. Small 8vo, 4 s.
- The Works of. Translated, with Introduction and Notes. 6 vols. Small post $8 \mathrm{vo}, 55$. each.

Vol. I. -The Apology of Socrates-Crito-Phaedo-Gorgias-Prota-goras-Phaedrus-Theaetetus-Eutyphron-Lysis. Translated by the REV. H. CARY.

Vol. II.-The Republic-Timaeus-Critias. Translated by henry Davis.

Vol. III.-Meno-Euthydemus-The Sophist-Statesman-Cratylus -Parmenides-The Banquet. Translated by G. burges.
Vol. IV.-Philebus-Charmides-Laches-Menexenus-Hippias-Ion -The Two Alcibiades-Theages-Rivals-Hipparchus-Minos-Cli-topho-Epistles. Translated by G. burges.

Vol. V.-The Laws. Translated by g. burges.
Vol. VI.-The Doubtful Works. Edited by g. burges. With General Index to the six volumes.

- Apology, Crito, Phaedo, and Protagoras. Translated by the rev. h. Cary. Small post 8 vo , sewed, is., cloth, 1 s .6 d .
- Dialogues. A Summary and Analysis of. With Analytical Index, giving references to the Greek text of modern editions and to the above translations. By A. Day, ll.d. Small post 8vo, 5 s.
PLAUTUS, The Comedies of. Translated by h. t. riley, b.A. 2 vols. Small post 8vo, 5s, each.
Vol. I.-Trinummus-Miles Gloriosus-Bacchides-Stichus-Pseudolus -Menaechmei-Aulularia-Captivi-Asinaria-Curculio.
Vol. II.-Amphitryon-Rudens-Mercator-Cistellaria-Truculentus
-Persa-Casina-Poenulus-Epidicus-Mostellaria-Fragments.
- Trinummus, Menaechmei, Aulularia, and Captivi. Translated by H. T. riley, b.A. Small post 8 vo , sewed, is., cleth, is. 6 d.

PLINY. The Letters of Pliny the Younger. Melmoth's Translation, revised, by the REV. F. C. T. BOSANQUET, M.A. Small post 8 vo , 5 s.
PLUTARCH. Lives. Translated by A. stewart, m. A., late Fellow of Trinity College, Cambridge, and george long, m.A. 4 vols. small post $8 \mathrm{vo}, 3 \mathrm{~s} .6 \mathrm{~d}$. each.

- Morals. Theosophical Essays. Translated by c. W. king, m.A., late Fellow of Trinity College, Cambridge. Small post 8 vo , 5 s.
- Morals Ethical Essays. Translated by the rev. A. r. shilleto, m.a. Small post 8vo, 5 .
PROPERTIUS. Translated by rev. p. J. f. Gantilion, m.a., and accompanied by Poetical Versions, from various sources. Small post 8vo, 3s. 6 d.
PRUDENTIUS, Translations from. A Selection from his Works, with a Translation into English Verse, and an Introduction and Notes, by francis st. John thackeray, m.A., f.S.A., Vicar of Mapledurham, formerly Fellow of Lincoln College, Oxford, and Assistant-Master at Eton. Wide post 8vo, 7s. 6d.
QUINTILIAN: Institutes of Oratory, or, Education of an Orator. Translated by the rev. J. s. watson, m.a. 2 vols. small post 8 vo , 5s. each.
SALLUST, FLORUS, and VELLEIUS PATERCULUS. Translated by J. s. watson, m.a. Small post 8 vo , 5 .
SENECA: On Benefits. Translated by A. stewart, m.a., late Fellow of Trinity College, Cambridge. Small post $8 \mathrm{vo}, 3 \mathrm{~s} .6 \mathrm{~d}$.
- Minor Essays and On Clemency. Translated by A. stewart, m.a. Small post 8vo, 5 .
SOPHOCLES. Translated, with Memoir, Notes, etc., by e. P. coleridge, B.A. Small post $8 \mathrm{vo}, 5$ s.

Or the plays separately, crown 8vo, sewed, is. each.

- The Tragedies of. The Oxford Translation, with Notes, Arguments, and Introduction. Small post 8 vo , 5 s.
- The Dramas of. Rendered in English Verse, Dramatic and Lyric, by sir george young, bart., m.a., formerly Fellow of Trinity College, Cambridge. 8vo, i2s. 6 d.
- The CEdipus Tyrannus. Translated into English Prose. By prof. B. h. kennedy. Crown 8 vo , in paper wrapper, is.

SUETONIUS. Lives of the Twelve Caesars and Lives of the Grammarians. Thomson's revised Translation, by t. forester. Small post 8vo, 5 s.
TACITUS, The Works of. Translated, with Notes and Index 2 vols.. Small post 8vo, 5s. each.

Vol. I. - The Annals.
Vol. II.-The History, Germania, Agricola, Oratory, and Index.
TERENCE and PHAEDRUS. Translated by h. t. Riley, b.A. Small post $8 \mathrm{vo}, 5$.
THEOCRITUS, BION, MOSCHUS, and TYRTAEUS. Translated by the rev. J. banks, m.a. Small post 8 vo , 5 .
THEOCRITUS. Translated into English Verse by c. s. Calvfrley, m,A., late Fellow of Christ's College, Cambridge. New edition, revised. Crown Svo , 7s. 62 .

THUCYDIDES. The Peloponnesian War. Translated by the rev. h. dale. With Portrait. 2 vols., 3s. 6d. each.

- Analysis and Summary of. By J. т. wheeler. Small post 8vo, 5 s.

Virgil. Translated by a. hamilton bryce, llid. With Memoir and Introduction. Small post $8 \mathrm{vo}, 3 \mathrm{~s}$. 6 d .

Also in 6 vols., crown 8vo, sewed, is. each.
Georgics.
Bucolics.
REneid I.-III.
XENOPHON. The Works of. In 3 vols. Small post 8vo, 5s. each.
Vol. I.-The Anabasis, and Memorabilia. Translated by the rev. J. s. watson, m.A. With a Geographical Commentary, by w. f. ainsworth, F.S.A., F.R.G.S., etc.

Vol. II.-Cyropaedia and Hellenics. Translated by the rev. J. s. watson, m.a., and the rev. h. dale.
Vol. III.-The Minor Works. Translated by the rev. J. s. watson, M.A.

- Anabasis. Translated by the rev. J. s. watson, m.A. With Memoir and Map. 3 vols.
- Hellenics. Books I. and II. Translated by the rev. h. dale, m.a. With Memoir.

SABRINAE COROLLA In Hortulis Regiae Scholae Salopiensis contexuerunt tres viri floribus legendis. $4^{\text {th }}$ edition, revised and re-arranged. By the late benjamin hall kennedy, d.d., Regius Professor of Greek at the University of Cambridge. Large post 8 vo , Ios. 6 d .
SERTUM CARTHUSIANUM Floribus trium Seculorum Contextum. Cura gulielmi haig brown, Scholae Carthusianae Archididascali. Demy 8vo, 5 s.
TRANSLATIONS into English and Latin. By c.s. calverley, m.a., late Fellow of Christ's College, Cambridge. 3 rd edition. Crown 8vo, 7s. 6 d.
TRANSLATIONS from and into the Latin, Greek and English. By r. c. Jebb, m.A., Regius Professor of Greek in the University of Cambridge, h. Jackson, M.A., litt. d., Fellows of Trinity College, Cambridge, and w. e. CURrey, m.A., formerly Fellow of Trinity College, Cambridge. Crown 8vo. 2nd edition, revised. 8s.

GRAMMAR AND COMPOSITION.

BADDELEY. Auxilia Latina. A Series of Progressive Latin Exercises. By M. J. B. baddeley, M.A. Fcap. 8vo. Part I., Accidence. 5th edition. 2s. Part II. 5 th edition. 2s. Key to Part II. 2 s . 6 d .
BAIRD. Greek Verbs. A Catalogue of Verbs, Irregular and Defective ; their leading formations, tenses in use, and dialectic inflexions, with a copious Appendix, containing Paradigms for conjugation, Rules for formation of tenses, \&c., \&c. By J. s. BAIRD, T.c.D. New edition, revised. 2s. 6d.

- Homeric Dialect. Its Leading Forms and Peculiarities. By J. s. baird, t.c.d. New edition, revised. By the rev. w. gunion rutherford, M.A., LL.D., Head Master at Westminster School. Is.

BAKER. Latin Prose for London Students. By arthur baker, m.A., Classical Master, Independent College, Taunton. Fcap. 8vo, $2 s$.

BARRY. Notes on Greek Accents. By the right rev. A. barry, D. D. New edition, re-written. Is.

CHURCH. Latin Prose Lessons. By A. J. ChURCH, m.A., Professor of Latin at University College, London. 9th edition. Fcap. 8vo, 2s. $6 d$.
Clapin. Latin Primer. By the rev. A. c. clapin, m.A., Assistant Master at Shervorne School. $4^{\text {th }}$ edition. Fcap. 8vo, Is.
COLLINS. Latin Exercises and Grammar Papers. By t. collins, M.A., Head Master of the Latin School, Newport, Salop. 7th edition. Fcap. 8vo, 2s. 6d.

- Unseen Papers in Latin Prose and Verse. With Examination Questions. 7 th edition. Fcap. $8 \mathrm{vo}, 2 s .6 d$.
- Unseen Papers in Greek Prose and Verse. With Examination Questions. $4^{\text {th }}$ edition. Fcap. 8vo, $3^{\text {s. }}$.
- Easy Translations from Nepos, Caesar, Cicero, Livy, \&c., for Retranslation into Latin. With Notes. $2 s$.
COMPTON. Rudiments of Attic Construction and Idiom. An Introduction to Greek Syntax for Beginners who have acquired some knowledge of Latin. By the rev. w. Cookworthy compton, m.a., Head Master of Dover College. Crown 8vo, 3 s.
FROST. Eclogae Latinae ; or, First Latin Reading Book. With Notes and Vocabulary by the late rev. p. frost, m.A. Fcap. 8 vo , is. $6 d$.
- Analecta Graeca Minora. With Notes and Dictionary. New edition. Fcap. 8vo, $2 s$.
- Materials for Latin Prose Composition. By the late rev. p. frost, M.A. New edition. Fcap. 8vo. 2s. Key. 4s. net.
- A Latin Verse Book. Nerw edition. Fcap. 8vo, 2s. Key. 5s. net.
- Materials for Greek Prose Composition. New edition. Fcap. 8vo, 2s. $6 d$. Key. 5 s. net.
- Greek Accidence. New edition. is.
- Latin Accidence. is.

HARKNESS. A Latin Grammar. By albert harkness. Post 8 vo , 6 .
KEY. A Latin Grammar. By the late T. H. KEY, M.A., F.R.S. 6th thousand. Post 8 vo , 8 s.

- A Short Latin Grammar for Schools. 16th edition. Post 8vo, 3 s. 6 d .

HOLDEN. Foliorum Silvula. Part I. Passages for Translation into Latin Elegiac and Heroic Verse. By h. A. holden, ll.d. inth edition. Post 8vo, 7 s . 6 d .

- Foliorum ©ilvula. Part II. Select Passages for Translation into Latin Lyric and Comic Iambic Verse. $3^{\text {rd }}$ edition. Post $8 \mathrm{vo}, 5$ s.
- Foliorum Centuriae. Select Passages for Translation into Latin and Greek Prose. Ioth edition. Post $8 \mathrm{vo}, 8$ s.
JEBB, JACKSON, and CURREY. Extracts for Translation in Greek, Latin, and English. By R. C. Jebb, Litt.d., Ll.d., Regius Professor of Greek in the University of Cambridge; H. JACKSON, LITT.D., Fellow of Trinity College, Cambridge ; and w. e. currey, M.A., late Fellow of Trinity College, Cambridge. 45.6%
Latin Syntax, Principles of. is.
Latin Versification. A.

MASON. Analytical Latin Exercises By C. P. MASON, B.A. $4^{\text {th }}$ edition. Part I., 1s. 6d. Part II., 2s. 6d.

- The Analysis of Sentences Applied to Latin. Post 8vo, 15. 6\%.

NETTLESHIP. Passages for Translation into Latin Prose. Preceded by Essays on :-I. Political and Social Ideas. II. Range of Metaphorical Expression. III. Historical Development of Latin Prose Style in Antiquity. IV. Cautions as to Orthography. By h. nettleshlp, m.A., late Corpus Professor of Latin in the University of Oxford. Crown 8vo, 3 s. A Key, $4 \mathrm{~s} .6 d$. net.
Notabilia Quaedam; or the Principal Tenses of most of the Irregular Greek Verbs, and Elementary Greek, Latin, and French Constructions. New edition. is.
PALEY. Greek Particles and their Combinations according to Attic Usage. A Short Treatise. By f. A. paley, M.A., ll.d. $25.6 d$.
PENROSE. Latin Elegiac Verse, Easy Exercises in. By the Rev. J. penrose. Nerw edition. 2s. (Key, 3s. 6d. net.)
PRESTON. Greek Verse Composition. By g. preston, M.A. 5th edition. Crown 8vo, 4s. 6d.
PRUEN. Latin Examination Papers. Comprising Lower, Middle, and Upper School Papers, and a number of the Woolwich and Sandhurst Standards. By g. g. pruen, M. A., Senior Classical Master in the Modern Department, Cheltenham College. Crown Svo, 2s. $6 d$.
SEAGER. Faciliora. An Elementary Latin Book on a New Principle. By the rev. J. L. seager, m.a. $2 s .6 d$.
STEDMAN (A. M. M.). First Latin Lessons. By a. m. m. stedman, M.A., Wadham College, Oxford. 2nd edition, enlarged. Crown 8vo, 25 .

- Initia Latina. Easy Lessons on Elementary Accidence. 2nd sdition. Fcap. 8vo, Is.
- First Latin Reader. With Notes adapted to the Shorter Latin Primer and Vocabulary. Crown 8vo, Is. 6 d .
- Easy Latin Passages for Unseen Translation. $2 n d$ and enlarged edition. Fcap. 8vo, 1s. 6d.
- Exempla Latina. First Exercises in Latin Accidence. With Vocabulary. Crown 8vo, is. $6 d$.
- The Latin Compound Sentence ; Rules and Exercises. Crown 8vo, Is. 6 d . With Vocabulary, 2 s .
- Easy Latin Exercises on the Syntax of the Shorter and Revised Latin Primers. With Vocabulary. $3^{\text {rd }}$ edition. Crown $8 \mathrm{vo}, 2 \mathrm{~s} .6 \mathrm{~d}$.
- Latin Examination Papers in Miscellaneous Grammar and Idioms. 3 rd edition. 2s. $6 d$. Key (for Tutors only), $6 s$. net.
- Notanda Quaedam. Miscellaneous Latin Exercises. On Common Rules and Idioms. 2nd edition. Fcap. 8 vo is. $6 d$. With Vocabulary, $2 s$.
- Latin Vocabularies for Repetition. Arranged according to Subjects. $3^{\text {rd }}$ edition. Fcap. 8vo, Is. 6 d.
- Steps to Greek. 18mo, is. $6 d$.
- Easy Greek Passages for Unseen Translation. Fcap. 8vo, is. 6d.
- Easy Greek Exercises on Elementary Syntax.
[In preparation.
- Greek Vocabularies for Repetition. Fcap. 8vo, 1s. 6d.
- Greek Testament Selections for the Use of Schools. 2nd edition. With Introduction, Notes, and Vocabulary. Fcap. $8 \mathrm{vo}, 2 \mathrm{~s} .6 \mathrm{~d}$.
- Greek Examination Papers in Miscellaneous Grammar and Idioms. 2nd edition. 2s. 6 d . Key (for Tutors only), 6s. net.

THACKERAY. Anthologia Graeca. A Selection of Greek Poetry, with Notes. By F. St. John thackeray. $5^{\text {th }}$ edition. $16 \mathrm{mo}, 4 \mathrm{~s} .6 d$.

- Anthologia Latina. A Selection of Latin Poetry, from Naevius to Boëthius, with Notes. By rev. F. ST. John thackeray. 6th edition. $16 \mathrm{mo}, 4 \mathrm{~s} .6 \mathrm{~d}$.
- Hints and Cautions on Attic Greek Prose Composition. Crown $8 \mathrm{vo}, 3 \mathrm{~s} .6 \mathrm{~d}$.
- Exercises on the Irregular and Defective Greek Verbs. is. $6 d$.

WELLS. Tales for Latin Prose Composition. With Notes and Vocabulary. By g. i. wells, M.A., Assistant Master at Merchant Taylor's School. Fcap. 8vo, $2 s$.

HISTORY, GEOGRAPHY, AND REFERENCE BOOKS, ETC.

TEUFFEL'S History of Roman Literature. 5 th edition, revised by dr. sChwabe, translated by professor g. C. w. Warr, m.a, King's College, London. Medium 8vo. 2 vols. 30s. Vol. I. (The Republican Period), 15 s . Vol. II. (The Imperial Period), 15 s.
KEIGHTLEY'S Mythology of Ancient Greece and Italy. $4^{\text {th }}$ edition, revised by the late Leonhard SChmitz, Ph.d., Ll. D., Classical Examiner to the University of London With 12 Plates. Small post 8vo, 5 s.
DONALDSON'S Theatre of the Greeks. Ioth edition. Small post 8vo, 5 s.
DICTIONARY OF LATIN AND GREEK QUOTATIONS; including Proverbs, Maxims, Mottoes, Law Terms and Phrases. With all the Quantities marked, and English Translations. With Index Verborum. Small post $8 \mathrm{vo}, 5$.
A GUIDE TO THE CHOICE OF CLASSICAL BOOKS. By J. b. mayor, m.a., Professor of Moral Philosophy at King's College, late Fellow and Tutor of St. John's College, Cambridge. 3rd edition, with Supplementary List. Crown 8vo, 4s. 6d.
PAUSANIAS' Description of Greece. Newly translated, with Notes and Index, by A. r. Shilleto, M.A. 2 vols. Small post 8vo, 5s. each.
STRABO'S Geography. Translated by w. FalConrr, M.A., and h. C. hamilton. 3 vols. Small post 8 vo , 5 s. each.
AN ATLAS OF CLASSICAL GEOGRAPHY. By w. hughes and G. long, M.A. Containing Ten selected Maps. Imp. 8vo, 3 s.

AN ATLAS OF CLASSICAL GEOGRAPHY. Twenty-four Maps by w. hughes and george long, m.a. With coloured outlines. Imperial 8vo, 6 s.
ATLAS OF CLASSICAL GEOGRAPHY. 22 large Coloured Maps. With a complete Index. Imp. 8vo, chiefly engraved by the Messrs. Walker. 7s. $6 d$.

MATHEMATICS.

ARITHMETIC AND ALGEBRA.

BARRACLOUGH (T.). The Eclipse Mental Arithmetic. By titus barraclough, Board School, Halifax. Standards I., II., and III., sewed, $6 d$. ; Standards II., III., and IV., sewed, $6 d$. net ; Book III., Part A, sewed, $4 d$. ; Book III., Part B, cloth, is. $6 d$.
BEARD (W. S.). Graduated Exercises in Addition (Simple and Compound). For Candidates for Commercial Certificates and Civil Service appointments. By w. s. beard, f.r.G.s., Head Master of the Modern School, Fareham. 3 rd edition. Fcap. 4to, Is.

- See PENDLEBURY.
elsee (C.). Arithmetic. By the rev. c. elsee, m.a., late Fellow of St. John's College, Cambridge, Senior Mathematical Master at Rugby School. 14th edition. Fcap. 8vo, 3s. 6d.
[Camb. School and College Texts.
- Algebra. By the rev. c. elsee, m.A. 8th edition. Fcap. 8vo, 4s. [Camb. S. and C. Texts.
FILIPOWSKI (H. E.). Anti-Logarithms, A Table of. By н. e. FILIPOWSKI. 3 rd edition. 8vo, 15 s.
GOUDIE (W. P.). See Watson.
HATHORNTHWAITE (J. T.). Elementary Algebra for Indian Schools. By J. t. hathornthwaite, m.a., Principal and Professor of Mathematics at Elphinstone College, Bombay. Crown 8vo, 25.
MACMICHAEL (W. F.) and PROWDE SMITH (R.). Algebra. A Progressive Course of Examples. By the rev. w. f. macmichael, and r. prowde smith, M.A. $4^{\text {th }}$ edition. Fcap. 8vo, 3s. $6 d$. With answers, 4 s . 6 d . [Camb. S. and C. Texts.
MATHEWS (G. B.). Theory of Numbers. An account of the Theories of Congruencies and of Arithmetical Forms. By g. b. mathews, m.A., Professor of Mathematics in the University College of North Wales. Part I. Demy 8vo, i2s.
MOORE (B. T). Elementary Treatise on Mensuration. Bу в. т. moore, m.A., Fellow of Pembroke College, Cambridge. New edition. 3s. 6 d .
PENDLEBURY (C.). Arithmetic. With Examination Papers and 8,000 Examples. By charles pendlebury, m.A., F.r.A.S., Senior Mathematical Master of St. Paul's, Author of "Lenses and Systems of Lenses, treated after the manner of Gauss." 8th edition. Crown 8vo. Complete, with or without Answers, 4s. 6d. In Two Parts, with or without Answers, 2s. 6 d . each.

Key to Part II. 7s. 6d. net.
[Camb. Math. Ser.

- Examples in Arithmetic. Extracted from Pendlebury's Arithmetic. With or without Answers. 6th edition. Crown 8vo, 3 s., or in Two Parts, is. 6 d . and 2 s .

Camb. Math. Ser.

- Examination Papers in Arithmetic. Consisting of 140 papers, each containing 7 questions; and a collection of 357 more difficult problems 3 rd edition. Crown $8 \mathrm{vo}, 25.6 d$. Key, for Tutors only, 5s. net.

PENDLEBURY (C.) and TAIT (T. S.). Arithmetic for Indian Schools. By C. PENDLEbURY, M.A. and T. S. TAIT, M.A., B.SC., Princival of Baroda College. Crown 8vo, 3s. [Camb. Math. Ser. PENDLEBURY (C.) and BEARD (W. S.). Arithmetic for the Standards. By C. Pendlebury, M.A., F.R.A.S., and W. S. Beard, F. R.G.S. Standards I., II., III., sewed, 2d. each, cloth, $3 d$. each ; IV., V., VI., sewed, $3 d$. each, cloth, $4 d$. each; VII., sewed, $6 d$., cloth, Sd . Answers to I. and II., 4d., III.-VII., $4 d$. each.

- Elementary Arithmetic. $3^{\text {rd edition. Crown 8vo, } 1 s .6 d .}$

POPE (L. J.). Lessons in Elementary Algebra. By L. J. POPE, B.A. (Lond.), Assistant Master at the Oratory School, Birmingham. First Series, up to and including Simple Equations and Problems. Crown 8vo, Is. $6 d$.
PROWDE SMITH (R.). See Macmichael.
SHAW (S. J. D.). Arithmetic Papers. Set in the Cambridge Highel Local Examination, from June, 1869, to June, 1887 , inclusive, reprinted by permission of the Syndicate. By S. J. D. SHAW, Mathematical Lecturer of Newnham College. Crown 8vo, 2s. 6d.; Key, 4s. 6d. net.
TAIT (T. S.). See Pendlebury.
WATSON (J.) and GOUDIE (W. P.). Arithmetic. A Progressive Course of Examples. With Answers. By J. watson, M.A., Corpus Christi College, Cambridge, formerly Senior Mathematical Master of the Ordnance School, Carshalton. $7^{\text {th }}$ edition, revised and enlarged. By w. P. goudie, b.A. Lond. Fcap. 8vo, 2s. 6d. [Camb. S. and C. Texts.

WHITWORTH (W. A.). Algebra. Choice and Chance. An Elementary Treatise on Permutations, Combinations, and Probability, with 640 Exercises and Answers. By w. A. whitworth, M.A., Fellow of St. John's College, Cambridge. $4^{\text {th }}$ edition, revised and enlarged. Crown 8vo, 6s.
[Camb. Math. Ser.
WRIGLEY (A.) Arithmetic. By a. Wrigley, m.a., St. John's College. Fcap. 8vo, 3s. 6d.
[Camb. S. and C. Texts.

BOOK-KEEPING.

CRELLIN (P.). A New Manual of Book-keeping, combining the Theory and Practice, with Specimens of a set of Books. By PHillip crellin, Chartered Accountant. Crown 8vo, 3s. 6d.

- Book-kceping for Teachers and Pupils. Crown 8vo, 1s. 6d. Key, 25. net.

FOSTER (B. W.). Double Entry Elucidated. By b. w. FOSTER. 14th edition. Fcap. 4to, 3s. 6 d .
MEDHURST (J. T.). Examination Papers in Book-keeping. Compiled by John t. MedHurst, A.K.C., F.S.S., Fellow of the Society of Accountants and Auditors, and Lecturer at the City of London College. $3^{\text {rd }}$ edition. Crown 8vo, 3 s.
THOMSON (A. W.). A Text-Book of the Principles and Practice of Book-keeping. By PROFESSOR A. W. THOMSON, B.SC., Royal Agricultural College, Cirencester. 2nd edition, revised. Ciown 8vo, 5 s.

GEOMETRY AND EUCLID.

BESANT (W. H.). Conic Sections treated Geometrically. By w. h. besant, sc.d., F.R.S., Fellow of St. John's College, Cambridge. 9th edition. Crown 8vo, 4s. 6d. net. Key, 5s. net. [Camb. Math. Ser.
BRASSE (J.). The Enunciations and Figures of Euclid, prepared for Students in Geometry. By the rev. J. brasse, d.d. New edition. Fcap. 8vo, Is. Without the Figures, $6 d$.
DEIGHTON (H.). Euclid. Books I.-VI., and part of Book XI., newly translated from the Greek Text, with Supplementary Propositions, Chapters on Modern Geometry, and numerous Exercises. By horace deighton, m.a., Head Master of Harrison College, Barbados. $3^{\text {rd }}$ edition. 4s. $6 d$., or Books I.-IV., 3s. Books V.-XI., 2s. $6 d$. Key, 5 s. net. [Camb. Math. Ser.
Also issued in parts :-Book I., Is. ; Books I. and II., Is. 6 d. ; Books I.-III., 2s. 6 d. ; Books III. and IV., 1 s .6 d .

DIXON (E. T.). The Foundations of Geometry. By edward t. dixon, late Royal Artillery. Demy 8 vo , 6 s.
MASON (C. P.). Euclid. The First Two Books Explained to Beginners. By c. p. mason, b.A. $2 n d$ edition. Fcap. $8 \mathrm{vo}, 2 \mathrm{~s} .6 d$.
McDOWELL (J.) Exercises on Euclid and in Modern Geometry, containing Applications of the Principles and Processes of Modern Pure Geometry. By the late J. mcdowell, M.A., F.r.A.S., Pembroke College, Cambridge, and Trinity College, Dublin. $4^{\text {th }}$ edition. $6 s$.
[Camb. Math. Ser.
TAYLOR (C.). An Introduction to the Ancient and Modern Geometry of Conics, with Historical Notes and Prolegomena. 155.

- The Elementary Geometry of Conics. By c. Taylor, d.d., Master of St. John's College. $7^{\text {th }}$ edition, revised. With a Chapter on the Line Infinity, and a new treatment of the Hyperbola. Crown 8vo, 4 s .6 d .
[Camb. Math. Ser.
WEBB (R.). The Definitions of Euclid. With Explanations and Exercises, and an Appendix of Exercises on the First Book by r. webb, M.A. Crown 8 vo , is. $6 d$.

WILLIS (H. G.). Geometrical Conic Sections. An Elementary Treatise. By h. G. willis, m.A., Clare College, Cambridge, Assistant Master of Manchester Grammar School. Crown 8vo, 5s. [Canib. Math. Ser.

ANALYTICAL GEOMETRY, ETC.

ALDIS (W. S.). Solid Geometry, An Elementary Treatise on. By w. S. aldis, M. A., late Professor of Mathematics in the University College, Auckland, New Zealand. $4^{\text {th }}$ edition, revised. Crown 8vo, 6s.
[Camb. Math. Ser.
BESANT (W. H.). Notes on Roulettes and Glissettes. By w. H. besant, sc.d., F.R.S. 2nd edition, enlarged. Crown 8vo, 5 s.
[Camb. Math. Ser

CAYLEY (A.). Elliptic Functions, An Elementary Treatise on. By arthur cayley, Sadlerian Professor of Pure Mathematics in the University of Cambridge. 2nd edition. Demy 8 vo . I5s.
TURNBULL (W. P.). Analytical Plane Geometry, An Introduction to. By w. p. turnbull, m.a., sometime Fellow of Trinity College. 8 vo , 12 s .
VYVYAN (T. G.). Analytical Geometry for Schools. By rev. t. vyvyan, m.a., Fellow of Gonville and Caius College, and Mathematical Master of Charterhouse. 6thedition. 8vo, 4s. 6d. [Camb. S. and C. Texts.

- Arialytical Geometry for Beginners. Part I. The Straight Line and Circle. Crown 8vo, 2s. 6d. [Camb. Math. Ser.
WHITWORTH (W. A.). Trilinear Co-ordinates, and other methods of Modern Analytical Geometry of Two Dimensions. By w. A. whitworth, m.a., late Professor of Mathematics in Queen's College, Liverpool, and Scholar of St. John's College, Cambridge. 8vo, I6s.

TRIGONOMETRY.

DYER (J. M.) and WHITCOMBE (R. H.). Elementary Trigonometry. By J. M. DYER, M.A. (Senior Mathematical Scholar at Oxford), and rev. R. h. whitcombe, Assistant Masters at Eton College. 2 nd edition. Crown 8vo, 4s. 6 d .
[Camb. Math. Ser.
PENDLEBURY (C.). Elementary Trigonometry. By charles pendlebury, m.a., f.r.a.s., Senior Mathematical Master at St. Paul's School. Crown 8vo, 4s. 6d.
[Cainb. Math. Ser.
VYVYAN (T. G.). Introduction to Plane Trigonometry. By the rev. t. g. vyvyan, m.A., formerly Fellow of Gonville and Caius College, Senior Mathematical Master of Charterhouse. $3^{r d}$ edition, revised and augmented. Crown 8vo, 3s. 6d.
[Camb. Math. Ser.
WARD (G. H.). Examination Papers in Trigonometry. By g. H. ward, m.A., Assistant Master at St. Paul's School. Crown 8vo, 2s. $6 d$. Key, 5 s. net.

MECHANICS AND NATURAL PHILOSOPHY.

ALDIS (W. S.). Geometrical Optics, An Elementary Treatise on. By w. s. Aldis, M.A. $4^{\text {th }}$ edition. Crown 8vo, 4s. [Camb. Math. Ser.

- An Introductory Treatise on Rigid Dynamics. Crown 8vo, 4s.
[Camb. Math. Ser.
- Fresnel's Theory of Double Refraction, A Chapter on. 2nd edition, revised. 8vo, 2 s .
BASSET (A. B.). A Treatise on Hydrodynamics, with numerous Examples. By A. b. basset, m.A., f.r.S., Trinity College, Cambridge. Demy 8 vo. Vol. I., price 1os. 6 d . ; Vol. II., 12 s .6 d .
- An Elementary Treatise on Hydrodynamics and Sound. Demy 8vo, 7 s. $6 d$.
- A Treatise on Physical Optics. Demy 8vo, 16 s.

BESANT (W. H.). Elementary Hydrostatics. By w. h. besant, SC.D., F.R.S. 16 th edition. Crown 8vo, 4s. $6 d$. Solutions, 5s. net.
[Camb. Math. Ser.

- Hydromechanics, A Treatise on. Part I. Hydrostatics. 5th edition revised, and enlarged. Crown 8vo, 5 .
[Camb. Math. Ser.

BESANT (W. H.). A Treatise on Dynamics. 2nd edition. Crown Svo, ios. 6id.
CHALLIS (PROF.). Pure and Applied Calculation. By the late rev. J. challis, m.a., f.r.s., \&c. Demy 8 vo , 15 s.

- Physics, The Mathematical Principle of. Demy 8vo, 5 s.
- Lectures on Practical Astronomy. Demy 8vo, ios.

EVANS (J. H.) and MAIN (P. T.). Newton's Principia, The First Three Sections of, with an Appendix; and the Ninth and Eleventh Sections. By J. h. evans, M.A., St. John's College. The 5 th edition, edited by p. t. main, m.a., Lecturer and Fellow of St. John's College. Fcap. 8vo, 45 .
[Camb. S. and C. Texts.
GALLATLY (W.). Elementary Physics, Examples and Examination Papers in. Statics, Dynamics, Hydrostatics, Heat, Light, Chemistry, Electricity, London Matriculation, Cambridge B.A., Edinburgh, Glasgow, South Kensington, Cambridge Junior and Senior Papers, and Answers. By w. gallatly, M.A., Pembroke College, Cambridge, Assistant Examiner, London University. Crown 8vo, 4s. [Camb. Math. Ser.
GARNETT (W.). Elementary Dynamics for the use of Colleges and Schools. By william garnett, M.a., d.c.l., Fellow of St. John's College, late Principal of the Durham College of Science, Newcastle-uponTyne. $5^{\text {th }}$ edition, revised. Crown $8 \mathrm{vo}, 6$ s.
[Camb. Math. Ser.

- Heat, An Elementary Treatise on. 6ith edition, revised. Crown 8vo, 4s. 6 d .
[Camb. Math. Ser.
GOODWIN (H.). Statics. By h. Goodwin, D.D., late Bishop of Carlisle. 2nd edition. Fcap. 8vo, 3s. [Camb. S. and C. Texts.
HOROBIN (J. C.). Elementary Mechanics. Stage I. II. and III., is. 6 d . each. By J. c. horobin, m.A., Principal of Homerton New College, Cambridge.
- Theoretical Mechanics. Division I. Crown 8vo, 2s. 6 d .
${ }^{*}{ }^{*}$ This book covers the ground of the Elementary Stage of Division 1 . of Subject VI. of the "Science Directory," and is intended for the examination of the Science and Art Department.
JESSOP (C. M.). The Elements of Applied Mathematics. Including Kinetics, Statics and Hydrostatics. By C. M. JESSOP, M.A., late Fellow of Clare College, Cambridge, Lecturer in Mathematics in the Durham College of Science, Newcastle-on-Tyne. Crown 8vo, 6 s .
[Camb. Math. Ser.
MAIN (P. T.). Plane Astronomy, An Introduction to. By p. T. MAlN, M.A., Lecturer and Fellow of St. John's College. 6th edition, revised. Fcap. 8vo, 45.
PARKINSON (R. M.). Structural Mechanics. By R. M. PARKINSON, ASSOC. M.I.C.E. Crown 8vo, 4s. 6 d.
PENDLEBURY (C.). Lenses and Systems of Lenses, Treated after the Manner of Gauss. By charles pendlebury, M.A., F. R. A.S., Senior Mathematical Master of St. Paul's School, late Scholar of St. John's College, Cambridge. Demy 8vo, 5 .
STEELE (R. E.). Natural Science Examination Papers. By r. e. Steele, M.A., f.c.S., Chief Natural Science Master, Bradford Grammar School. Crown 8vo. Part I., Inorganic Chemistry, 2s. 6 d . Part II., Physics (Sound, Light, Heat, Magnetism, Electricity), 2s. 6 d .
[School Exam. Series.

WALTON (W.). Theoretical Mechanics, Problems in. By w. walton, m.a, Fellow and Assistant Tutor of Trinity Hall, Mathematical Lecturer at Magdalene College. 3 rd erlition, revised. Demy $8 \mathrm{vo}, 16 \mathrm{~s}$.

- Elementary Mechanics, Problems in. 2nd edition. Crown 8vo, $6 s$.
[Camb. Math. Ser.
DAVIS (J. F.). Army Mathematical Papers. Being Ten Years' Woolwich and Sandhurst Preliminary Papers. Edited, with Answers, by J. F. Davis, D.lit., M.A. Lond. Crown $8 \mathrm{vo}, 2 \mathrm{~s} .6 \mathrm{~d}$.

DYER (J. M.) and PROWDE SMITH (R.). Mathematical Examples. A Collection of Examples in Arithmetic, Algebra, Trigonometry, Mensuration, Theory of Equations, Analytical Geometry, Statics, Dynamics, with Answers, \&c. For Army and Indian Civil Service Candidates. By J. M. Dyer, M.A., Assistant Master, Eton College (Senior Mathematical Scholar at Oxford), and r. prowde smith, m.a. Crown 8vo, $6 s$.
[Camb. Math. Ser.
GOODWIN (H.). Problems and Examples, adapted to "Goodwin's Elementary Course of Mathematics.". By T. G. Vyvyan, M.A. $3^{\text {rd }}$ edition. 8vo, $5 s$.; Solutions, 3rd eaition, 8vo, 9s.
SMALLEY (G. R.). A Compendium of Facts and Formulae in Pure Mathematics and Natural Philosophy. By g. r. smalley, f.r.a.s. New edition, revised and enlarged. By J. mcdowell, M.A., F.R.A.S. Fcap. 8vo, 2 s.

WRIGLEY (A.). Collection of Examples and Problems in Arithmetic, Algebra, Geometry, Logarithms, Trigonometry, Conic Sections, Mechanics, \&c., with Answers and Occasional Hints. By the rev. A. wrigley. Ioth edition, 20th thousand. Demy 8vo, 3s. 6d.

A Key. By j. c. platts, m.a. and the rev. A. wrigley. 2nd edition. Deiny 8vo, 5 s. net.

MODERN LANGUAGES.

ENGLISH.

ADAMS (E.). The Elements of the English Language. By ernest adams, Ph.D. 26 th edition. Revised by J. F. Davis, D.lit., M.A., (Lond.). Post 8vo, 4s. 6d.

- The Rudiments of English Grammar and Analysis. By ernest ADAMS, Ph.D. 19th thousand. Fcap. 8vo, Is.
ALFORD (DEAN). The Queen's English: A Manual of Idiom and Usage. By the late henry alford, D.d., Dean of Canterbury. 6th edition. Small post 8 vo . Sewed, 1s., cloth, Is. $6 d$.
ASCHAM'S Scholemaster. Edited by proffssor J.e. b. mayor. Small post 8 vo , sewed, is.
BELL'S ENGLISH CLASSICS. A New Series, Edited for use in Schools, with Introduction and Notes. Crown 8vo.

BACON'S Essays Modernized. Edited by F. J. Rowe, M.A., Professor of
English I.iterature at Presidency College, Calcutta. [Preparing. BROWNING'S Strafford. Edited by E. H. HICkzy. With Introduction by © R. GARDINRR, LI..D. 2s. 6 \%.

BELL'S ENGLISH CLASSICS-continued.
bURKE'S Letters on a Regicide Peace. I. and II. Edited by h. g. krene, M. A., C.I. E. 3 3. ; sewed, 25 .

BYRON'S Childe Harold. Edited by h. G. KEENE, M.A., c.I.e., Author of "A Manual of French Literature," etc. 3^{55}. 6 d . Also Cantos I. and II. separately ; sewed, 1S. 9d.

- Siege of Corinth. Edited by p. hordern, late Director of Public Instruction in Burma. is. $6 d$. ; sewed, 15.
CHAUCER, SELECTIONS FROM. Edited by J. b, bILDRRBECK, b.A. Professor of English Literature, Presidency College, Madras. 2s. 6 d .; sewed, 1s. 9 d .
DE QUINCEY'S Revolt of the Tartars and The English Mail-Coach. Edited by cecil m. barrow, m.a., Principal of Victoria College, Palghât, and mark hunter, b.a., Principal of Coimbatore College. 3 s. ; sewed, 1 s.
DE QUINCEY'S Opium Eater. Edited by MARK HUNTER, B.A. [In the press. GOLDSMITH'S Good-Natured Man and She Stoops to Conquer. Edied by k. deighton. Each, 2s. cloth; is. $6 d$. sewed. The two plays together, sewed, 2s. 6 d .
IRVING'S Sketch Book. Edited by R. g. oxenham, M.A. Sewed, is. $6 d$.
JOHNSON'S Life of Addison. Edited by f. RYLAND, Author of "The Students' Handbook of Psychology," etc. 2s. 6 d .
- Life of Swift. Edited by f. Ryland, M.A. 2s.
- Life of Pope. Edited by f. rvland, m.a. $2 s .6 a d$.
- Life of Milton. Edited by f. ryland, m.a. $2 s .6 d$.
- Life of Dryden. Edited by F. RYLand, M.A. $2 s .6$ d.

LAMB'S Essays. Selected and Edited by k. deighton. 3s.; sewed, $2 s$.
LONGFELLOW'S Evangeline. Edited by M. T. qUinn, m.A. [In the press. MACAULAY'S Lays of Ancient Rome. Edited by p. hordern. 2s. 6 d .; sewed, is. 9 d.

- Essay on Clive. Edited by cecil barrow, m.a. 2 s.; sewed, is. $6 d$.

MASSINGER'S A New Way to Pay Old Debts. Edited by k. deighton. $3 s$. ; sewed, 2 s.
MILTON'S Paradise Lost. Books III. and IV. Edited by r. g. oxenham, m.a., Principal of Elphinstone College, Bombay. 2s.; sewed, is. $6 d$., or separately, sewed, rod. each.

- Paradise Regained. Edited by k. deighton. 2s. $6 d$. ; sewed, is. 9 d.

POPE, SELECTIONS FROM. Containing Essay on Criticism, Rape of the Lock, Temple of Fame, Windsor Forest. Edited by к. deighton. 2s. 6 d .; sewed, is. 9 d.
SHAKESPEARE'S Julius Caesar. Edited by t. Duff barnett, bat. (Lond.). $2 s$.

- Merchant of Venice. Edited by t. duff barnett, b.a. (Lond.). $2 s$.
- Tempest. Edited by t. duff barnett, b.a. (Lond.). 25.

Others to follow.
BELL'S READING BOOKS. Post $8 v o$, cloth, illustrated.

Infants.

Infant's Primer. 3^{d}.
Tot and the Cat. $6 d$.
The Old Boathouse. $6 d$.
The Cat and the Hen. $6 d$.
Standard I.
School Primer. $6 d$.
The Two Parrots. 6d.
The Three Monkeys. $6 d$.
The New-born Lamb. $6 d$.
The Blind Boy. $6 d$.
Standard II.
The Lost Pigs. $6 d$.
Story of a Cat. $6 d$.
Queen Bee and Busy Bee. 6%

Gulls' Crag. $6 d$.
Standard III.
Great Deeds in English History. Is.
Adventures of a Donkey. Is.
Grimm's Tales. Is.
Great Englishmen. Is.
Andersen's Tales. Is.
Life of Columbus. Is.
Standard IV.
Uncle Tom's Cabin. Is. Great Englishwomen. Is.
Great Scotsmen. Is.
Edgeworth's Tales. Is.
Gatty's Parables from Nature. Is. Scott's Talisman. Is,

BELL'S READING BOOKS-continued.

Standard V.
Dickens' Oliver Twist. Is.
Dickens' Little Nell. is.
Masterman Ready. Is.
Marryat's Poor Jack. is.
Arabian Nights. Is.
Gulliver's Travels. Is.
Lyrical Poetry for Boys and Girls. Is.
Vicar of Wakefield. is.

Standards VI. and VII.
Lamb's Tales from Shakespeare. Is.
Robinson Crusoe. is.
Tales of the Coast. is. Settlers in Canada. is. Southey's Life of Nelson. Is. Sir Roger de Coverley. Is.

BELL'S GEOGRAPHICAL READERS. By m. J. BARRINGTONWard, M.A. (Worcester College, Oxford).
The Child's Geography. Illus- \mid The Round World. (StandardII.) trated. Stiff paper cover, 6 d .
The Map and the Compass. (Standard I) Illustrated. Cloth, $8 d$.

Illustrated. Cloth, Iod.
About England. (Standard III.) With Illustrations and Coloured Map. Cloth, is. 4 d.

BELL'S ANIMAL LIFE READERS. A Series of Reading Books for the Standards, designed to inculcate the humane treatment of animals. Edited by edith carrington and ernest bell. Illustrated by HARRISON WEIR and others. [In preparation.
EDWARDS (F.). Examples for Analysis in Verse and Prose. Selected and arranged by f. edwards. New edition. Fcap. 8vo, cloth, Is.
GOLDSMITH. The Deserted Village. Edited, with Notes and Life, by C. P. MASON, B.A., F.C.P. $4^{\text {th }}$ edition. Crown 8 vo , Is.
HANDBOOKS OF ENGLISH LITERATURE. Edited by J. w. hales, M.A., formerly Clark Lecturer in English Literature at Trinity College, Cambridge, Professor of English Literature at King's College, London. Crown 8vo, 3s. 6d. each.

The Age of Pope. By john dennis.
The Age of Dryden. By r. Garnett, Ll. D., C.b.
In preparation.
The Age of Chaucer. By Professor hales.
The Age of Shakespeare. By professor hales.
The Age of Milton. By J. bass mullinger, m.a.
The Age of Wordsworth. By professor c. h. herford, litt.d. The Age of Johnson. By thomas seccombe.
The Age of Tennyson. By professor hugh walker.
HAZLITT (W.). Lectures on the Literature of the Age of Elizabeth. Small post 8vo, sewed, 15 .

- Lectures on the English Poets. Small post 8vo, sewed, is.
- Lectures on the English Comic Writers. Small post 8vo, sewed, is.

LAMB (C.). Specimens of English Dramatic Poets of the Time of Elizabeth. With Notes. Small post 8vo, 3s. $6 d$ d.
MASON (C. P.). Grammars by C. P. MASON, b.A., F.C.P., Fellow of University College, London.

- First Notions of Grammar for Young Learners. Fcap. 8vo. 95th thousand. Cloth, Is.
- First Steps in English Grammar, for Junior Classes. Demy 18mo. 59th thousand. Is.

MASON (C. P.). Outlines of English Grammar, for the Use of Junior Classes. $17^{\text {th }}$ edition. 97 th thousand. Crown 8vo, 2 s .

- English Grammar; including the principles of Grammatical Analysis. 36 th edition, revised. 153 rd thousand. Crown 8 vo , green cloth, 3 s .6 d .
- A Shorter English Grammar, with copious and carefully graduated Exercises, based upon the author's English Grammar. 9th edition. 49th thousand. Crown 8vo, brown cloth, 3s. 6d.
- Practice and Help in the Analysis of Sentences. Price 2s. Cloth.
- English Grammar Practice, consisting of the Exercises of the Shorter English Grammar published in a separate form. 3rd edition. Crown 8vo, Is.
- Remarks on the Subjunctive and the so-called Potential Mood. 6d., sewn.
- Blank Sheets Ruled and headed for Analysis. is. per dozen.

MILTON : Paradise Lost. Books I., II., and III. Edited, with Notes on the Analysis and Parsing, and Explanatory Remarks, by C. P. mason, b.A., F.C.p. Crown 8vo. is. each.

- Paradise Lost. Books V.-VIII. With Notes for the Use of Schools. By c. m. lumby. 2s. $6 d$.
PRICE (A. C.). Elements of Comparative Grammar and Philology. For Use in Schools. By A. C. price, m. A., Assistant Master at Leeds Grammar School. Crown 8vo, 2s. 6d.
SHAKESPEARE. Notes on Shakespeare's Plays. With Introduction, Summary, Notes (Etymological and Explanatory), Prosody, Grammatical Peculiarities, etc. By t. duff barnett, b.a. Lond., late Second Master in the Brighton Grammar School. Specially adapted for the Local and Preliminary Examinations. Crown 8vo, 1s. each.

Midsummer Night's Dream.-Julius Cæsar.-The Tempest.-Macbeth.-Henry V.-Hamlet.-Merchant of Venice.-King Richard II. - King John. - King Richard III. - King Lear.-Coriolanus.-Twelfth Night.-As You Like it.-Much Ado About Nothing.
"The Notes are comprehensive and concise."-Educational Times.
"Comprehensive, practical, and reliable."-Schoolmaster.

- Hints for Shakespeare-Study. Exemplified in an Analytical Study of Julius Cæsar. By mary grafton moberly. 2ndedition. Crown 8vo, sewed, is.
- Coleridge's Lectures and Notes on Shakespeare and other English Poets. Edited by т. AShe, B. A. Small post $8 \mathrm{vo}, 3 \mathrm{~s} .6 \mathrm{~d}$.
- Shakespeare's Dramatic Art. The History and Character of Shakespeare's Plays. By dr. hermann ulrict. Translated by l. dora SCHMITZ. 2 vols. small post $8 \mathrm{vo}, 3$ s. $6 d$. each.
- William Shakespeare. A Literary Biography. By karl elze, ph.d., Ll.D. Translated by L. DORA SChmitz. Small post 8 vo , 5 s.
- Hazlitt's Lectures on the Characters of Shakespeare's Plays. Small post 8 vo , is.
See BELL'S ENGLISH CLASSICS.
SKEAT (W. W.). Questions for Examinations in English Literature. With a Preface containing brief hints on the study of English. Arranged by the rev. w. w. skeat, litt.d., Elrington and Bosworth

Professor of Anglo-Saxon in the University of Cambridge. 3 rd edition. Crown 8vo, 2s. 6 d.
SMITH (C. J.) Synonyms and Antonyms of the English Language. Collected and Contrasted by the ven. C. J. Smith, M.A. 2 nd edition, revised. Small post 8 vo , 5 s.

- Synonyms Discriminated. A Dictionary of Synonymous Words in the English Language. Illustrated with Quotations from Standard Writers. By the late ven. c. J. smith, m.A. With the Author's latest Corrections and Additions, edited by the rev. h. percy smith, m.A., of Balliol College, Oxford, Vicar of Great Barton, Suffolk. $4^{\text {th }}$ edition. Demy $8 \mathrm{vo}, 14 \mathrm{~s}$.
TEN BRINK'S History of English Literature. Vol. I. Early English Literature (to Wiclif). Translated into English by horace m. kennedy, Professor of German Literature in the Brooklyn Collegiate Institute. Small post 8vo, 3s. 6 d .
- Vol. II. (Wiclif, Chaucer, Earliest Drama, Renaissance). Translated by w. clarke robinson, ph.d. Small post $8 \mathrm{vo}, 3 \mathrm{~s} .6 \mathrm{~d}$.
- Lectures on Shakespeare. Translated by Julia franklin. Small post $8 \mathrm{vo}, 3 \mathrm{~s} .6 \mathrm{~d}$.
THOMSON : Spring. Edited by c. p. MASON, B.A., f.C.p. With Life. 2nd edition. Crown 8 vo , is.
- Winter. Edited by c. P. MASON, b.A., f.C.P. With Life. Crown 8vo, is.

WEBSTER'S INTERNATIONAL DICTIONARY of the English Language. Including Scientific, Technical, and Biblical Words and Terms, with their Significations, Pronunciations, Alternative Spellings, Derivations, Synonyms, and numerous illustrative Quotations, with various valuable literary Appendices, with 83 extra pages of Illustrations grouped and classified, rendering the work a Complete Literary and Scientific Reference-Book. New edition (1890). Thoroughly revised and enlarged under the supervision of NOAH PORTER, D. D., LL. D. I vol. (2, II 8 payes, 3,500 woodcuts), 4 to, cloth, 31 s .6 d .; half calf, $£ 22 \mathrm{~s}$. ; half russia, $£^{2} 5$ s. ; calf, $£ 28$ s. ; or in 2 vols. cloth, $£_{1} 145$ s.

Prospectuses, with specimen pages, sent post free on application.
WEBSTER'S BRIEF INTERNATIONAL DICTIONARY. A Pronouncing Dictionary of the English Language, abridged from Webster's International Dictionary. With a Treatise on Pronunciation, List of Prefixes and Suffixes, Rules for Speliing, a Pronouncing Vocabulary of Proper Names in History, Geography, and Mytholugy, and Tables of English and Indian Money, Werghts, and Measures. With 564 pages and 800 Illustrations. Demy 8vo, 3 s.
WRIGHT (T.). Dictionary of Obsolete and Provincial English. Containing Words from the English Writers previous to the 19th century, which are no longer in use, or are not used in the same sense, and Words which are now used only in the Provincial Dialects. Compiled by thomas Wright, M.A., F.S.A., etc. 2 vols. 5 s. each.

FRENCH CLASS BOOKS.

BOWER (A. M.). The Public Examination French Reader. With a Vocabulary to every extract, suitable for all Students who are preparing for a French Examination. By A. M. BOWER, F.R.G.S., late Master in University College School, etc. Cloth, 3s. $6 d$.
BARBIER (PAUL). A Graduated French Examination Course. By paul barbier, Lecturer in the South Wales University College, etc. Crown 8vo, 3 s.
BARRERE (A.) Junior Graduated French Course. Affording Materials for Translation, Grammar, and Conversation. By A. Barrère, Professor R.M.A., Woolwich. 1s. 6d.

- Elements of French Grammar and First Steps in Idioms. With numerous Exercises and a Vocabulary. Being an Introduction to the Précis of Comparative French Grammar. Crown 8vo, $2 s$.
- Précis of Comparative French Grammar and Idioms and Guide to Examinations. $4^{\text {th }}$ edition. 3s. $6 d$.
- Récits Militaires. From Valmy (1792) to the Siege of Paris (1870). With English Notes and Biographical Notices. 2nd edition. Crown 8vo, 3 s.
CLAPIN (A. C.). French Grammar for Public Schools. By the rev. A. C. Clapin, m. A., St. John's College, Cambridge, and Bachelier-ès-lettres of the University of France. Fcap. 8vo. 14th edition. 2s. 6 d .

Key to the Exercises. 3 s .6 d . net.

- French Primer. Elementary French Grammar and Exercises for Junior Forms in Public and Preparatory Schools. Fcap. 8vo. 10th edition. Is.
- Primer of French Philology. With Exercises for Public Schools. 7 th edition. Fcap. 8vo, 15.
- English Passages for Translation into French. Crown 8vo, 2s. 6d. Key (for Tutors only), 45 . net.
DAVIS (J. F.) Army Examination Papers in French. Questions set at the Preliminary Examinations for Sandhurst and Woolwich, from Nov., 1876, to June, 1890 , with Vocabulary. By J. F. DAVis, D. Lit., M.A., Lond. Crown 8vo, $2 s .6 d$.
DAVIS (J. F.) and THOMAS (F.). An Elementary French Reader. Compiled, with a Vocabulary, by J. F. DAVIS, M.A., D.LIT., and ferdinand thomas, Assistant Examiners in the University of London. Crown 8vo, 2 s.
DELILLE'S GRADUATED FRENCH COURSE.
The Beginner's own French Book. 25. Key, 25 .

Easy French Poetry for $\mathrm{Be}=$ ginners. $2 s$.
French Grammar. 3s. Key, 3 s.

Repertoire des Prosateurs. 3s. 6d. Modèles de Poesie. 3s. 6 d . Manuel Etymologique. 2s. 6d. Synoptical Table of French Verbs. 6d.

ESCLANGON (A.). The French Verb Newly Treated: an Easy, Uniform, and Synthetic Method of its Conjugation. By A. Esclangon, Examiner in the University of London. Small 4to, 5 s.
GASC (F. E. A.). First French Book; being a New, Practical, and Easy Method of Learning the Elements of the French Language. Reset and thoroughly revisea. I16th thousand. Crown 8vo, Is.

- Second French Book; being a Grammar and Exercise Book, on a new and practical plan, and intended as a sequel to the "First French Book." $52 n d$ thousand. Fcap. 8vo, Is. $6 d$.

GASC (F. E. A.). Key to First and Second French Books. 6t/ edition, Fcap. 8vo, 3s. 6d. net.

- French Fables, for Beginners, in Prose, with an Index of all the Words at the end of the work. 17 th thousand. $12 \mathrm{mo}, 1 \mathrm{~s} .6 \mathrm{~d}$.
- Select Fables of La Fontaine. 19th thousand. Fcap. 8vo, is. 61.
- Histoires Amusantes et Instructives ; or, Selections of Complete Stories from the best French modern authors, who have written for the young. With English notes. 17th thousand. Fcap. 8vo, $2 s$.
- Practical Guide to Modern French Conversation, containing:I. The most current and useful Phrases in Everyday Talk. II. Everybody's necessary Questions and Answers in Travel-Talk. 19th edition. Fcap. 8vo, Is. 6 d .
- French Poetry for the Young. With Notes, and preceded by a few plain Rules of French Prosody. 5th edition, revised. Fcap. 8vo, 1s. 6 d .
- French Prose Composition, Materials for. With copious footnotes, and hints for idiomatic renderings. 21 st thousand. Fcap. 8vo, 3 s.

Key. 2nd edition. 6s. net.

- Prosateurs Contemporains ; or, Selections in Prose chiefly from contemporary French literature. With notes. 11 th edition. $12 \mathrm{mo}, 3 \mathrm{~s} .6 \mathrm{~d}$.
- Le Petit Compagnon; a French Talk-Book for Little Children. 14 th edition. 16 mo , $15.6 d$.
- French and English Dictionary, with upwards of Fifteen Thousand new words, senses, \&c., hitherto unpublished. $5^{\text {th }}$ edition, with numerous additions and corrections. In one vol. 8 vo , cloth, ios. 6 d . In use at Harrow, Rugby, Shrewsbury, \&c.
- Pocket Dictionary of the French and English Languages; for the everyday purposes of Travellers and Students. Containing more than Five Thousand modern and current words, senses, and idiomatic phrases and renderings, not found in any other dictionary of the two languages. New edition. 53 rd thousand. 16 mo , cloth, 25.6 d .
GOSSET (A.). Manual of French Prosody for the use of English Students. By arthur gosset, m.a., Fellow of New College, Oxford. Crown 8vo, 3^{5}.
"This is the very book we have been looking for. We hailed the title with delight, and were not disappointed by the perusal. The reader who has mastered the contents will know, what not one in a thousand of Englishmen who read French knows, the rules of French poetry." Journal of Education.
LE NOUVEAU TRESOR; designed to facilitate the Translation of English into French at Sight. By M. E. s. 18th edition. Fcap. 8vo, 1s. 6 d.
STEDMAN (A. M. M.). French Examination Papers in Miscellaneous Grammar and Idioms. Compiled by A. M. M. Stedman, m.a. 5th edition. Crown 8vo, 2s. 6 d .

A Key. By g. A. schrumpr. For Tutors only. 6s. net.

- Easy French Passages for Unseen Translation. Fcap. 8vo, 1s. $6 d$.
- Easy French Exercises on Elementary Syntax. Crown 8vo, 2s. $6 d$.
- First French Lessons. Crown 8vo, is.
- French Vocabularies for Repetition. Fcap. 8vo, is.
- Steps to French. 12mo, 8d.

FRENCH ANNOTATED EDITIONS.

balzac. Ursule Mirouët. By honore de balzac. Edited, with Introduction and Notes, by James boïelle, b.eès-L., Senior French Master, Dulwich College. $3^{\text {s. }}$
Clarétie. Pierrille. By jules clarétie. With 27 Illustrations. Edited, with Introduction and Notes, by James boïrlle, b.-ès-L. $2 s .6 d$.
DAUDET. La Belle Nivernaise. Histoire d'un vieux bateau et de son équipage. By alphonse daudet. Edited, with Introduction and Notes, by james boïelle, b.èes-L. With Six Illustrations. $2 s$.
FÉNELON. Aventures de Télémaque. Edited by c. J. Delille. $4^{\text {th }}$ edition. Fcap. 8vo, 2s. $6 d$.
GOMBERT'S FRENCH DRAMA. Re-edited, with Notes, by f. e. A. Gasc. Sewed, 6d. each.

MOLIÈRE.
Le Misanthrope.
L'A vare.
Le Bourgeois Gentilhomme.
Le Tartuffe.
Le Malade Imaginaire.
Les Fourberies de Scapin.
Les Précieuses Ridicules.
L'Ecole des Femmes.

Les Femmes Savantes.
L'Ecole des Maris.
Le Médecin Malgré Lui.
RACINE.
La Thébailde, ou Les Frères Ennemis.
Andromaque.
Les Plaideurs.
Iphigénie
CORNEILLE.
Le Cid.
Britannicus.
Phèdre.
Esther.
Athalie.

Cinna.
Polyeucte.
VOLTAIRE.-Zalre.
Greville. Le Moulin Frappier. By henry greville. Edited, with Introduction and Notes, by James boïrlle, b.-ès-L. 3 s.
HUGO. Bug Jargal. Edited, with Introduction and Notes, by James boïelle, b.-ès-L. 3 s.
LA FONTAINE. Select Fables. Edited by F. E. A. GASC. 19th thousand. Fcap. 8vo, is. 6d.
LAMARTINE. Le Tailleur de Pierres de Saint-Point. Edited with Notes by James boïrlee, b.-ès-L. 6 th thousand. Fcap. 8vo, is. $6 d$. SAINTINE. Picciola. Edited by Dr. DUBUC. 16th thousand. Fcap. $8 \mathrm{vo}, \mathrm{Is} .6 d$.
VOLTAIRE. Charles XII. Edited by l. DIREY. 7th edition. Fcap. 8 vo , is. $6 d$.

GERMAN CLASS BOOKS.

BUCHHEIM (DR. C. A.). German Prose Composition. Consisting of Selections from Modern English Writers. With grammatical notes, idiomatic renderings, ar.d general introduction. By c. A. BUCHHEIM, PH.D., Professor of the German Language and Literature in King's College, and Examiner in German to the London University. 14 th edition, enlarged and revised. With a list of subjects for original composition. Fcap. 8vo, 45. $6 d$.

A Key to the 1st and 2nd parts. 3 rd edition. 3s. net. To the 3 rd and 4 th parts. 4 s . net.
BUCHHEIM (DR. C. A.). First Book of German Prose. Being Parts I. and II. of the above. With Vocabulary by H. R. Fcap. 8vo, is. $6 d$. CLAPIN (A. C.). A German Grammar for Public Schools. By the rev. a. c. clapin, and f. holl-müller, Assistant Master at the Bruton Grammar School. 6 th edition. Fcap. 8vo, 2s. $6 d$.

- A German Primer. With Exercises. 2nd edition. Fcap. 8vo, is.

German. The Candidate's Vade Mecum. Five Hundred Easy Sentences and Idioms. By an Army Tutor. Cloth, 1s. For Army Prelim. Exam.
LANGE (F.). A Complete German Course for Use in Public Schools.
By f. lange, Ph.d., Professor R.M.A. Woolwich, Examiner in German to the College of Preceptors, London ; Examiner in German at the Victoria University, Manchester. Crown 8vo.
Concise German Grammar. With special reference to Phonology, Comparative Philology, English and German Equivalents and Idioms. Comprising Materials for Translation, Grammar, and Conversation. Elementary, 2s.; Intermediate, 2 s . ; Advanced, 3 s .6 d .
Progressive German Examination Course. Comprising the Elements of German Grammar, an Historic Sketch of the Teutonic Languages, English and German Equivalents, Materials for Translation, Dictation, Extempore Conversation, and Complete Vocabularies. I. Elementary Course, $2 s$. II. Intermediate Course, $2 s$. III. Advanced Course. Second revised edition. Is. $6 d$.
Elementary German Reader. A Graduated Collection of Readings ir Prose and Poetry. With English Notes and a Vocabulary. $4^{t h}$ edition. Is. 6 d .
Advanced German Reader. A Graduated Collection of Readings in Prose and Poetry. With English Notes by f. LaNge, Ph.d., and J. F. DAVIS, D. LIT. $2 n d$ edition. 3 s.

MORICH (R. J.). German Examination Papers in Miscellaneous Grammar and Idioms. By r. J. morich, Manchester Grammar School. 2nd edition. Crown 8vo, 2s. 6d. A Key, for Tutors only. 5s. net.
PHILLIPS (M. E.). Handbook of German Literature. By Mary e. phillips, ll.A. With Introduction by Dr. A. weiss, Professor of German Literature at R. M. A. Woolwich. Crown 8vo. [Shortly. STOCK (DR.). Wortfolge, or Rules and Exercises on the order of Words in German Sentences. With a Vocabulary. By the late frederick sтоск, D.lit., M.A. Fcap. 8vo, Is. $6 d$.

KLUGE'S Etymological Dictionary of the German Language. Translated by J. F. Davis, d. lit. (Lond.). Crown 4to, 18s.

GERMAN ANNOTATED EDITIONS.

AUERBACH (B.). Auf Wache. Novelle von berthold aderbach. Der Gefrorene Kuss. Novelle von отto roquette. Edited bya. A. macdonell, m.a., ph.d. $2 n d$ edition. Crown $8 \mathrm{vo}, 25$.
BENEDIX (J. R.). Doktor Wespe. Lustspiel in funf Aufzuigen von julius roderich benedix. Edited by profrssor f. lange, ph.d. Crown 8vo, 2s. $6 d$.

EBERS (G.). Eine Frage. Idyll von georg ebers. Edited by f. storr B. A., Chief Master of Modern Subjeets in Merchant Taylors' School. Crown 8vo, $2 s$.
FREYTAG (G.). Die Journalisten. Lustspiel von gustav freytag. Editel by Professor f. Lange, ph.D. 4 threvised edition. Crown 8 vo , 25.6 d .

- SOLL UND HABEN. Roman von gustav freytag. Edited by w. hanby crump, m.a. Crown 8vo, $25.6 d$.

GERMAN BALLADS from Uhland, Goethe, and Schiller. With Introductions, Copious and Biographical Notices. Edited by c. L. Bielefeeld. 4 th edition. Fcap. 8vo, Is. $6 d$.
GERMAN EPIC TALES IN PROSE. I. Die Nibelungen, von a. f. c. vilmar. II. Walther und Hildegund, von albert richter. Edited by karl neuhaus, ph.d., the International College, Isleworth. Crown 8vo, 2s. $6 d$.
GOETHE. Hermann und Dorothea. With Introduction, Notes, and Arguments. By e. bell, M. A., and e. wölfel. 2nd edition. Fcap. 8vo, is. $6 d$.
GOETHE. FAUST. Part I. German Text with Hayward's Prose Translation and Notes. Revised, With Introduction by c. A. buchheim, PII. D., Professor of German Language and Literature at King's College, London. Small post Svo, 5 s.
GUTZKOW (K.). Zopf und Schwert. Lustspiel von karl gutzkow. Edited by professor f. lange, ph.d. Crown 8 vo , $2 s .6 d$.
HEY'S FABELN FÜR KINDER. Illustrated by o. SPECKTER. Edited, with an Introduction, Grammatical Summary, Words, and a complete Vocabulary, by professor f. lange, ph.d. Crown 8vo, is. 6 d .

- The same. With a Phonetic Introduction, and Phonetic Transcription of the Text. By professor f. lange, ph.d. Crown 8vo, $2 s$.
HEYSE (P.). Hans Lange. Schauspiel von Paul heyse. Edited by A. A. MaCDONell, M.A., PII.D., Taylorian Teacher, Oxford University. Crown 8vo, $2 s$.
HOFFMANN (E. T. A.). Meister Martin, der Küfner. Erzählung von e. t. a. hoffmann. Edited by f. lange, ph.d. $2 n d$ edition. Crown 8vo, $15.6 d$.
MOSER (G. VON). Der Bibliothekar. Lustspiel von g. von moser. Edited by F. LANGE, Ph.D. $4^{\text {th }}$ edition. Crown $8 \mathrm{vo}, 2 s$.
ROQUETTE (O.). See Auerbach.
SCHEFFEL (V. VON). Ekkehard. Erzählung des zehnten Jahrhunderts, von victor von scheffel. Abridged edition, with Introduction and Notes by herman hager, ph.d., Lecturer in the German Language and Literature in The Owens College, Victoria University, Manchester. Crown 8vo, 3 s.
SCHILLER'S Wallenstein. Complete Text, comprising the Weimar Prologue, Lager, Piccolomini, and Wallenstein's Tod. Edited by Dr. buchmeim, Professor of German in King's College, London. 6th edition. Fcap. 8vo, 5s. Or the Lager and Piccolomini, 2s. 6d. Wallenstein's Tod, 2s. $6 d$.
- Maid of Orleans. With English Notes by dr. wilhelm wagner. $3^{\text {rd }}$ edition. Fcap. 8vo, is. 6d.
- Maria Stuart. Edited by V. kastner, B.-ès-L., Lecturer on French Language and Literature at Victoria University, Manchester. 3 rdedition. Fcap. 8 vo , is. $6 d$.

ITALIAN.

DANTE. The Inferno. A Literal Prose Translation, with the Text of the Original collated with the best editions, printed on the same page, and Explanatory Notes. By John A. Carlyle, M.D. With Portrait. 2nd edition. Small post 8 vo , 5 s.

- The Purgatorio. A Literal Prose Translation, with the Text of Bianchi printed on the same page, and Explanatory Notes. By w. s. dugdale. Small post 8vo, 5 .

BELL'S MODERN TRANSLATIONS.

A Series of Translations from Modern Languages, with Memoirs, Introductions, etc. Crown 8vo, is. each.
GOETHE. Egmont. Translated by anNa swanwick.

- Iphigenia in Tauris. Translated by anna swanwick.

HAUFF. The Caravan. Translated by S. Mendel.

- The Inn in the Spessart. Translated by S. Mendel.

LESSING. Laokoon. Translated by e. C. BEasLey.

- Nathan the Wise. Translated by R. Dillon boylan.
- Minna von Barnhelm. Translated by ernest bell, M.A.

MOLIERE. The Misanthrope. Translated by C. HERON WALL.

- The Doctor in Spite of Himself. (Le Médecin malgré lui). Translated by c. heron wall.
- Tartuffe; or, The Impostor. Translated by c. heron wall.
- The Miser. (L'Avare). Translated by C. heron wall.
- The Shopkeeper turned Gentleman. (Le Bourgeois Gentilhomme). Translated by c. HERON WALL.
RACINE. Athalie. Translated by R. BRUCE BOSWRLL, M.A.
- Esther. Translated by r. bruce boswell, m.a.

SCHILLER. William Tell. Translated by sir theodore martin, K.C.B., LL.D. New edition, entirely revised.

- The Maid of Orleans. Translated by anna swanwick.
- Mary Stuart. Translated by J. Mellish.
- Wallenstein's Camp and the Piccolomini. Translated by j. CHURCHILL and S. T. COLERIDGE.
- The Death of Wallenstein. Translated by S. T. coleridge.
** For other Translations of Modern Languages, see the Catalogue of Bohn's Libraries, which will be forwarded on application.

SCIENCE, TECHNOLOGY, AND ART.

CHEMISTRY.

COOKE (S.). First Principles of Chemistry. An Introduction to Modern Chemistry for Schools and Colleges. By Samuel Cooke, M. A., b. e., Assoc. Mem. Inst. C. E., Principal of the College of Science, Poona. 6 th edition, revised. Crown 8vo, 2s. 6d.

- The Student's Pracical Chemistry. Test Tables for Qualitative Analysis. $3^{r d}$ edition, revised and enlarged. Demy 8vo, is.

STÖCKHARDT (J. A.). Experimental Chemistry. Founded on the work of J. A. stockhardt. A Handbook for the Study of Science by Simple Experiments. By c. w. heaton, f.I.C., F.c.s., Lecturer in Chemistry in the Medical School of Charing Cross Hospital, Examiner in Chemistry to the Royal College of Physicians, etc. Revised edition. 55.
WILLiAMS (W. M.). The Framework of Chemistry. Part I. Typical Facts and Elementary Theory. By w. M. williams, M.A., St. John's College, Oxford ; Science Master, King Henry VIII.'s School, Coventry. Crown 8vo, paper boards, 9 d. net.

BOTANY.

HAYWARD (W. R.). The Botanist's Pocket-Book. Containing in a tabulated form, the chief characteristics of British Plants, with the botanical names, soil, or situation, colour, growth, and time of flowering of every plant, arranged under its own order; with a copious Index. By w. R. Hayward. 6 th edition, revised. Fcap. 8 vo , cloth limp, 4s. $6 d$.
LONDON CATALOGUE of British Plants. Part I., containing the British Phænogamia, Filices, Equisetaceæ, Lycopodiaceæ, Selaginellaceæ, Marsileaceæ, and Characeæ. 9th edition. Demy 8vo, $6 d$. ; interleaved in limp cloth, 1s. Generic Index only, on card, 2d.
MASSEE (G.). British Fungus-Flora. A Classified Text-Book of Mycology. By george massee, Author of "The Plant World." With numerous Illustrations. 4 vols. post $8 \mathrm{vo}, 7 \mathrm{f}, 6 \mathrm{~d}$. each.
SOWERBY'S English Botany. Containing a Description and Life-size Drawing of every British Plant. Edited and brought up to the present standard of scientific knowledge, by T. boswrll (late syme), li.d., F.L.s., etc. 3 rd edition, entirely revised. With Descriptions of all the Species by the Editor, assisted by N. e. brown. 12 vols., with 1,937 coloured plates, $£ 24$ 3s. in cloth, $£^{26}$ iis. in half-morocco, and $£ 3095$. in whole morocco. Also in 89 parts, 5s., except Part 89, containing an Index to the whole work, 7 s .6 d .
*** A Supplement, to be completed in 8 or 9 parts, is now publishing. Parts I., II., and III. ready, 5s. each, or bound together, making Vol. XIII, of the complete work, 175 .
TURNBULL (R.). Index of British Plants, according to the London Catalogue (Eighth Edition), including the Synonyms used by the principal authors, an Alphabetical List of Inglish Names, etc. By robert turnbull. Paper cover, 25.6 d ., cloth, 3 s.

GEOLOGY゙.

JUKES-BROWNE (A. J.). Student's Handbook of Physical Geology. By A. J. JUKeS-browne, b.A., F.G.s., of the Geological Survey of England and Wales. With numerous Diagrams and Illustrations. 2nd edition, much enlarged, 7s. 6 d .
-Student's Handbook of Historical Geology. With numerous Diagrams and Illustrations. 6 s .
"An admirably planned and well executed ' Handbook of Historical Geology.' "- Journal of Education.

- The Building of the British Izles. A Study in Geographical Evolution With Maps. $2 n d$ edition revised. 7s. 6 d .

MEDICINE.

CARRINGTON (R. E.), and LANE (W. A.). A Manual of Dissections of the Human Body. By the late r. e. Carrington, m.d. (Lond.), F.r.C.P., Senior Assistant Physician, Guy's Hospital. 2nd edition. Revised and enlarged by w. arbuthnot lane, m.S., F.r.c.s., Assistant Surgeon to Guy's Hospital, etc. Crown 8vo, 9s.
"As solid a piece of work asever was put into a book; accurate from beginning to end, and unique of its kind."-British Medical Journal.
HILTON'S Rest and Pain. Lectures on the Influence of Mechanical and Physiological Rest in the Treatment of Accidents and Surgical Diseases, and the Diagnostic Value of Pain. By the late john hilton, F.r.S., f.r.c.s., etc. Edited by w. H. A. JACobson, M.A., M.CH. (Oxon.), F.R.C.S. 5th edition. 9s.

HOBLYN'S Dictionary of Terms used in Medicine and the Collateral Sciences. 12 th edition. Revised and enlarged by J. A. P. Price, B.A., M.D. (Oxon.). Ios. $6 d$.

LANE (W. A.). Manual of Operative Surgery. For Practitioners and Students. By w. arbuthnot lane, M.b., m.S., f.r.c.S., Assistant Surgeon to Guy's Hospital. Crown 8vo, 8s. 6d.
SHARP (W.) Therapeutics founded on Antipraxy. By william sharp, m.d., f.r.s. Demy 8vo, 6 s.

BELL'S AGRICULTURAL SERIES.

$$
\text { In crown 8vo, Illustrated, } 160 \text { pages, cloth, 2s. 6d. each. }
$$

CHEAL (J.). Fruit Culture. A Treatise on Planting, Growing, Storage of Hardy Fruits for Market and Private Growers. By J. cheal, f.r. H.S., Member of Fruit Committee, Royal Hort. Society, etc.
FREAM (DR.). Soils and their Properties. By dr. william fream, b.sC. (Lond.)., F.L.S., F.G.S., F.S.S., Associate of the Surveyor's Institution, Consulting Botanist to the British Dairy Farmers' Association and the Royal Counties Agricultural Society ; Prof. of Nat. Hist. in Downton College, and formerly in the Royal Agric. Coll., Cirencester.
GRIFFITHS (DR.). Manures and their Uses. By Dr. A. B. GRIffiths, F.R.S.E., F.C.S., late Principal of the School of Science, Lincoln ; Membre de la Société Chimique de Paris ; Author of "A Treatise on Manures," etc., etc. In use at Downton College.

- The Diseases of Crops and their Remedies.

MALDEN (W. J.). Tillage and Implements. By w. J. malden, Prof. of Agriculture in the College, Downton.
SHELDON (PROF.). The Farm and the Dairy. By Professor J. P. sheldon, formerly of the Royal Agricultural College, and of the Downton College of Agriculture, late Special Commissioner of the Canadian Government. In use at Downton College.

Specially adapted for Agricultural Classes. Crown 8vo. Illustrated. 1s. each.
Practical Dairy Farming. By professor sheldon. Reprinted from the author's larger work entitled "The Farm and the Dairy."
Practical Fruit Growing. By J. Cheal, F.R.iI.S. Reprinted from the author's larger work, entitled "Fruit Culture."

TECHNOLOGICAL HANDBOOKS.

Edited by Sir H. Trueman Wood.

Specially adapted for candidates in the examinations of the City Guilds
Institute. Illustrated and uniformly printed in small post 8vo.
BEAUMONT (R.). Woollen and Worsted Cloth Manufacture. By roberts beaumont, Professor of Textile Industry, Yorkshire College, Leeds; Examiner in Cloth Weaving to the City and Guilds of London Institute. 2nd edition. 7s. 6d.
BENEDIKT (R), and KNECHT (E.). Coal-tar Colours, The Chemistry of. With special reference to their application to Dyeing, etc. By dr. R. benedikt, Professor of Chemistry in the University of Vienna. Translated by e. Knecht, PH.D. of the Technical College, Bradford. 2nd and enlarged edition, $6 s .6 d$.
CROOKES (W.). Dyeing and Tissue-Printing. By william Crookes, F.R.S., V.P.C.S. 5 s.

GADD (W. L.). Soap Mauufacture. By w. Lawrence gadd, F.I.C., F.C.s., Registered Lecturer on Soap-Making and the Technology of Oils and Fats, also on Bleaching, Dyeing, and Calico Printing, to the City and Guilds of London Institute. 5 s.
HELLYER (S. S.). Plumbing: Its Principles and Practice. By S. stevens hellyer. With numerous Illustrations. 5 s.

HORNBY (J.). Gas Manufacture. By J. Hornby, F.I.C., Lecturer under the City and Guilds of London Institute. [In the press.
HURST (G.H.). Silk-Dyeing and Finishing. By G. H. HURST, F.C.s., Lecturer at the Manchester Technical School, Silver Medallist, City and Guilds of London Institute. With Illustrations and numerous Coloured Patterns. 7s. 6d.
JACOBI (C. T.). Printing. A Practical Treatise. By C. T. JACOBI, Manager of the Chiswick Press, Examiner in Typography to the City and Guilds of London Institute. With numerous Illustrations. 5 s.
MARSDEN (R.). Cotton Spinning: Its Development, Principles, and Practice, with Appendix on Steam Boilers and Engines. By R. MARSDEN, Editor of the "Textile Manufacturer." 4 th edition. 6s. $6 d$.

- Cotton Weaving: Its Development, Principles, and Practice. By r. MARSDEN. With numerous Illustrations. Ios. $6 d$.
PHILLIPSON (J.). Coach Building.
POWELL (H.), CHANCE (H.), and HARRIS (H. G.). Glass Manufacture. Introductory Essay, by H. POWELL, B. A. (Whitefriars Glass Works) ; Sheet Glass, by henry chance, m. A. (Chance Bros., Birmingham): Plate Glass, by H. G. Harris, Assoc. Memb. Inst. C.E. 3s. $6 d$.

ZAEHNSDORF (J. W.) Bookbinding. By J. w. ZAEHNSDORF, Examiner in Bookbinding to the City and Guilds of London Institute. With 8 Coloured Plates and numerous Diagrams. 2nd edition, revised and enlarged. 5 s.

> ** Complete List of Technical Books on Application.

MUSIC.

BANISTER (H. C.). A Text Book of Music: By h. C. BANISTER, Professor of Harmony and Composition at the R.A. of Music, at the Guildhall School of Music, and at the Royal Normal Coll. and Acad. of Music for the Blind. 15 th edition. Fcap. 8vo. 5 s.

This Nanual contains chapters on Notation, Ilarmony, and Counterpoint ;

BANISTER (H. C.)-coniimued.
Modulation, Rhythm, Canon, Fugue, Voices, and Instruments; together with exercises on Harmony, an Appendix of Examination Papers, and a copious Index and Glossary of Musical Terms.

- Lectures on Musical Analysis. Embracing Sonata Form, Fugue, etc., Illustrated by the Works of the Classical Masters. 2nd edition, revised. Crown 8vo, 7s. 6d.
- Musical Art and Study : Papers for Musicians. Fcap. 8vo, $2 s$.

CHATER (THOMAS). Scientific Voice, Artistic Singing, and Effective Speaking. A Treatise on the Organs of the Voice, their Natural Functions, Scientific Development, Proper Training, and Artistic Use. By thomas chater. With Diagrams. Wide fcap. 2s. $6 d$.
HUNT (H. G. BONAVIA). A Concise History of Music, from the Commencement of the Christian era to the present time. For the use of Students. By rev. h. G. bonavia hunt, Mus. Doc. Dublin; Warden of Trinity College, London ; and Lecturer on Musical History in the same College. I $3^{\text {th }}$ edition, revised to date (1895). Fcap. 8vo, 3s. $6 d$.

ART.

BARTER (S.) Manual Instruction-Woodwork. By s. BARTER Organizer and Instructor for the London School Board, and to the Joint Committee on Manual Training of the School Board for London, the City and Guilds of London Institute, and the Worshipful Company of Drapers. With over 300 Illustrations. Fcap. 4to, cloth. 7s. $6 d$.
BELL (SIR CHARLES). The Anatomy and Philosophy of Expres. sion, as connected with the Fine Arts. By Sir Charles bell, K.h. 7 th edition, revised. 5 s.
BRYAN'S Biographical and Critical Dictionary of Painters and Engravers. With a List of Ciphers, Monograms, and Marks. A new Edition, thoroughly Revised and Enlarged. By R. e. Graves and WALTER ARMSTRONG. 2 volumes. Imp. 8 vo , buckram, $3 l .3$ s.
CHEVREUL on Colour. Containing the Principles of Harmony and Contrast of Colours, and their Application to the Arts. 3 rd edition, with Introduction. Index and several Plates. 5s.-With an additional series of 16 Plates in Colours, 7s. 6d.
DELAMOTTE (P. H.). The Art of Sketching from Nature. By P. h. delamottr, Professor of Drawing at King's College, London. Illustrated by Twenty-four Woodcuts and Twenty Coloured Plates, arranged progressively, from Water-colour Drawings by PROUT, E. W. COOKR, R.A., GIRTIN, varley, DE wint, and the Anthor. Newedition. Imp. 4to, $21 s$.
FLAXMAN'S CLASSICAL COMPOSITIONS, reprinted in a cheap form for the use of Art Students. Oblong paper covers, $2 s .6 d$. each.

Homer. 2 vols. - Eschylus. - Hesiod. - Dante.

- Lectures on Sculpture, as delivered before the President and Members of the Royal Academy. With Portrait and 53 plates. 6 s.
HARRIS (R.). Geometrical Drawing. For Army and other Examinations. With chapters on Scales and Graphic Statics. With 221 diagrams. By r. harris, Art Master at St. Paul's School. New edition, enlarged. Crown 8vo, 3s. 6d.
HEATON (MRS.). A Concise History of Painting. By the late MRS. cifaries heaton. Newedition. Revised by cosmo monkhouse. 5s.

LELAND (C. G.). Drawing and Designing. In a series of Lessons for School use and Self Instruction. by Charles g. leland, M.A., F.R.L.S. Paper cover, Is. ; or in cloth, Is. 6 d .

- Leather Work: Stamped, Moulded, and Cut, Cuir-Bouillé, Sewn, etc. With numerous Illustrations. Fcap. 4to, 5 s.
- Manual of Wood Carving. By Charles G. Leland, M.A., F.r.L.S. Revised by J. J. holtzapffel, A. M. inst.c.e. With numerous Illustrations. Fcap. 4to, 5 s.
- Metal Work. With numerous Illustrations. Fcap. 4to, 5 s.

LEONARDO DA VINCI'S Treatise on Painting. Translated from the Italian by J. F. RIGAUD, R.A. With a Life of Leonardo and an Account of his Works, by J. W. Brown. With numerous Plates. $5 s$.
MOODY (F. W.). Lectures and Lessons on Art. By the late F. w. moody, Instructor in Decorative Art at South Kensington Museum. With Diagrams to illustrate Composition and other matters. A new and cheaper edition. Demy 8vo, sewed, 4s. 6d.
STRANGE (E. F). Alphabets : a Handbook of Lettering, compiled for the use of Artists, Designers, Handicraftsmen, and Students. With complete Historical and Practical Descriptions. By edward f. strange. With more than 200 Illustrations. Imperial $16 \mathrm{mo}, 8 \mathrm{~s} .6 \mathrm{~d}$. net.
WHITE (GLEESON). Practical Designing: A Handbook on the Preparation of Working Drawings, showing the Technical Methods employed in preparing them for the Manufacturer and the Limits imposed on the Design by the Mechanism of Reproduction and the Materials employed. Edited by gleeson white. Freely Illustrated. 2nd edition. Crown $8 \mathrm{vo}, 6 \mathrm{~s}$. net.

Contents:-Bookbinding, by H. ORRINSMITH-Carpets, by ALEXANDER millar-Drawing for Reproduction, by the Editor-Pottery, by w. P. rix-Metal Work, by r. ll. Rathbone-Stained Glass, by selwyn image-Tiles, by owen carter-Woven Fabrics, Printed Fabrics, and Floorcloths, by arthur silver-Wall Papers, by g. C. haité.

MENTAL, MORAL, AND SOCIAL SCIENCES.

PSYCHOLOGY AND ETHICS.

ANTONINUS (M. Aurelius). The Thoughts of. Translated literally, with Notes, Biographical Sketch, Introductory Essay on the Philosophy, and Index, by George long, M.A. Revised edition. Small post 8vo, 3s. 6 d ., or new edition on Handmade paper, buckram, 6 s.
BACON'S Novum Organum and Advancement of Learning. Euited, with Notes, by J. DEVEY, M.A. Small post 8vo, 5 s.
EPICTETUS. The Disccurses of. With the Encheiridion and Fragments. Translated with Notes, a Life of Epictetus, a View of his Philosophy, and Index, by george long, m. A. Small post 8vo, 5 s., or newv edition on Hanamade paper, 2 vols., buckram, $105.6 d$.
KANT'S Critique of Pure Reason. Translated by J. M. D. meiklejohn, Professor of Education at St. Andrew's University. Small post 8vo, 5 s.

- Prolegomena and Metaphysical Foundations of Science. With Life. Translated by e. BELFORT bAX. Small post 8vo, 5 s.
LOCKE'S Philosophical Works. Edited by J. A. ST. JOHN. 2 vols. Smail post 8vo, 3s. 6d. each.

RYLAND (F.). The Student's Manual of Psychology and Ethics, designed chiefly for the London B.A. and B.Sc. By F. ryland, M.A., late Scholar of St. John's College, Cambridge. Cloth, red edges. 5 th edition, revised and enlarged. With lists of books for Students, and Examination Papers set at London University. Crown 8vo, 3s. $6 d$.

- Ethics : An Introductory Manual for the use of University Students. With an Appendix containing List of Books recommended, and Examination Questions. Crown 8vo, 3s. 6d.
- Logic. An Introductory Manual. Crown 8 vo .
[In the press.
SCHOPENHAUER on the Fourfold Root of the Principle of Sufficient Reason, and On the Will in Nature. Translated by madame hillebrand. Small post 8vo, 5 s .
- Essays. Selected and Translated. With a Biographical Introduction and Sketch of his Philosophy, by e. belfort bax. Small post 8vo, 55.
SMITH (Adam). Theory of Moral Sentiments. With Memoir of the Author by dugald stewart. Small post 8 vo , 3 s .6 d .
SPINOZA'S Chief Works. Translated witi: Introduction, by R. H. M. elwes. 2 vols. Small post 8vo, 5s. each.

Vol. I.-Tractatus Theologico-Politicus-Political Treatise.
II.-Improvement of the Understanding-Ethics-Letters.

HISTORY OF PHILOSOPHY.

BAX (E. B.). Handbook of the History of Philosophy. By e. belFORT BAX. 2nd edition, revised. Small post $8 \mathrm{vo}, 5$.
DRAPER (J. W.). A History of the Intellectual Development of Europe. By John william draper, m.d., ll.d. With Index. 2 vols. Small post 8vo, 5s. each.
FALCKENBERG (R.). History of Modern Philosophy. By richard falckenberg, Professor of Philosophy in the University of Erlangen. Translated by Professor A. c. armstrong. Demy 8vo, ibs.
HEGEL'S Lectures on the Philosophy of History. Translated by J. Sibree, m.A. Small post 8 vo , 5 .

LAW AND POLITICAL ECONOMY.

KENT'S Commentary on International Law. Ldited by J. T, ABDY, ll.D., Judge of County Courts and Law Professor at Gresham College, late Regius Professor of Laws in the University of Cambridge. 2nd edition, revised and brought down to a recent date. Crown 8vo, 1os. 6 d.
LAWRENCE (T. J.). Essays on some Disputed Questions in Modern International Law. By t. J. Lawrence, M.A., Ll. M. $2 n d$ edition, revised and enlarged. Crown 8vo, 6s.

- Handbook of Public International Law. 2nd edition. Fcap. 8vo, 3s.

MONTESQUIEU'S Spirit of Laws. A New Edition, revised and corrected, with D'Alembert's Analysis, Additional Notes, and a Memoir, by J. V. pritchard, A.m. 2 vols. Small post 8vo, 3s. 6d. each.
PROTHERO (M.). Political Economy. By michael prothero, m. A. Crown 8vo, 4s. $6 d$.
RICARDO on the Principles of Political Economy and Taxation. Edited by e. C. k. GONNER, M.A., Lecturer in University College, Liverpool. Small post 8vo, 5 s.
SMITH (Adam). The Wealth of Nations. An Inquiry into the Nature and Causes of. Reprinted from the Sixth Edition, with an Introduction by ernest belfort bax. 2 vols. Small post $8 \mathrm{vo}, 3$ s. $6 . l$. each

HISTORY.

BOWES (A.). A Practical Synopsis of English History; or, A General Summary of Dates and Events. By arthur bowes. Ioth edition. Revised and brought down to the present time. Demy 8vo, Is.
COXE (W.). History of the House of Austria, 1218-1792. By ARCHDN. COXE, M.A., F.R.S. Together with a Continuation from the Accession of Francis I. to the Revolution of 1848. 4 vols. Small post 8vo. 3s. 6d. each.
DENTON (W.). England in the Fifteenth Century. By the late Rev. W. DENTON, M.A., Worcester College, Oxford. Demy 8vo, 125.
DYER (Dr. T. H.). History of Modern Europe, from the Taking of Constantinople to the Establishment of the German Empire, A.D. 1453187 I . By DR. T. H. DYER. A new edition. In 5 vols. £2 2 ss .6 d .
GIBBON'S Decline and Fall of the Roman Empire. Complete and Unabridged, with Variorum Notes. Edited by an English Churchman. With 2 Maps. 7 vols. Small post 8 vo , 3s. 6d. each.
GREGOROVIUS' History of the City of Rome in the Middle Ages. Translated by annie hamilton. Vols. I., II., and III. Crown 8vo, $6 s$, each net.
GUIZOT'S History of the English Revolution of 1640 . Translated by william hazlitt. Small post 8vo, 3s. $6 d$.

- History of Civilization, from the Fall of the Roman Empire to the French Revolution. Translated by william hazlitt. 3 vols. Small post 8 vo , 3s. 6 d . each.
HENDERSON (E. F.). Select Historical Documents of the Middle Ages. Including the most famous Charters relating to England, the Empire, the Church, etc., from the sixth to the fourteenth centuries. Translated and edited, with Introductions, by ERNEST F. HENDERSON, A. B., A.M., PH.D. Small post $8 v o, 5$ s.
- A History of Germany in the Middle Ages. Post 8vo, 7s. 6d. net.

HOOPER (George). The Campaign of Sedan: The Downfall of the Second Empire, August-September, 1870. By george hooper. With General Map and Six Plans of Battle. Demy 8vo, 14 s.

- Waterloo: The Downfall of the First Napoleon: a History of the Campaign of 18 I 5 . With Maps and Plans. Small post 8vo, 3s. $6 d$.
LAMARTINE'S History of the Girondists. Translated by h. T. Ryde. 3 vols. Small post $8 \mathrm{vo}, 3$ s. $6 d$. each.
- History of the Restoration of Monarchy in France (a Sequel to his History of the Girondists). 4 vols. Small post 8 vo, 35.6 d . each.
- History of the French Revolution of 1848. Small post 8vo, 3s. $6 d$.

LAPPENBERG'S History of England under the Anglo-Saxon Kings. Translated by the late B. THORPE, F.S.A. New edition, revised by e. C. otte. 2 vols. Small post $8 \mathrm{vo}, 3$ s. $6 d$. each.
MACHIAVELLI'S History of Florence, and of the Affairs of Italy from the Earliest Times to the Death of Lorenzo the Magnificent : together with the Prince, Savonarola, various Historical Tracts, and a Memoir of Machiavelli. Small post 8 vo , 3s. 6 d .
MARTINEAU (H.). History of England from 1800-15. By Harriet martineau. Small post Svo, 3s. $6 d$.

MARTINEAU (H.). History of the Thirty Years' Peace, $1815-46$. 4 vols. Small post 8vo, 3s. $6 d$. each.
MAURICE (C. E.). The Revolutionary Movement of 1848-9 in Italy, Austria, Hungary, and Germany. With some Examination of the previous Thirty-three Years. By c. edmund maurice. With an engraved Frontispiece and other Illustrations. Demy 8 vo , $\mathbf{I} 6 \mathrm{~s}$.
MENZEL'S History of Germany, from the Earliest Period to 1842. 3 vols. Small post $8 \mathrm{vo}, 3$ s. 6 d . each.
MICHELET'S History of the French Revolution from its earliest indications to the flight of the King in 1791. Small post $8 \mathrm{vo}, 3 \mathrm{~s} .6 \mathrm{~d}$.
MIGNET'S History of the French Revolution, from 1789 to 1814. Small post 8 vo , 3s. 6 d .
PARNELL (A.). The War of the Succession in Spain during the Reign of Queen Anne, 1702-1711. Based on Original Manuscripts and Contemporary Records. By col. the hon. arthur parnell, R.E. Demy 8 vo , 14 s . With Map, etc.

RANKE (L.). History of the Latin and Teutonic Nations, 14941514. Translated by P. A. ASHWORTH. Small post $8 \mathrm{vo}, 3$ s. 6 d.

- History of the Popes, their Church and State, and especially of their conflicts with Protestantism in the 16th and 17th centuries. Translated by e. foster. 3 vols. Small post $8 \mathrm{vo}, 3 \mathrm{~s} .6 \mathrm{~d}$. each.
- History of Servia and the Servian Revolution, Translated by mrs. KERR. Small post 8 vo , 3 s . 6 d.
SIX OLD ENGLISH CHRONICLES: viz., Asser's Life of Alfred and the Chronicles of Ethelwerd, Gildas, Nennius, Geoffrey of Monmouth, and Richard of Cirencester. Edited, with Notes and Index, by J. A. GILES, D.C.L. Small post 8vo, 5 s.
STRICKLAND (Agnes). The Lives of the Queens of England; from the Norman Conquest to the Reign of Queen Anne. By Agnes STRICKLAND. 6 vols. 5 s. each.
- The Lives of the Queens of England. Abridged edition for the use of Schools and Families, Post 8vo, 6s. 6d.
THIERRY'S History of the Conquest of England by the Normans; its Causes, and its Consequences in England, Scotland, Ireland, and the Continent. Translated from the 7 th Paris edition by william hazlitt. 2 vols. Small post 8vo, 3s. 6 d . each.
WRIGHT (H. F.). The Intermediate History of England, with Notes, Supplements, Glossary, and a Mnemonic System. For Army and Civil Service Candidates. By h. f. wright, m.a., ll.m. Crown $8 \mathrm{vo}, 6 \mathrm{~s}$.
For other Works of value to Students of History, see Catalogue of Bohn's Libraries, sent post-free on application.

DIVINITY, ETC.

ALFORD (DEAN). Greek Testament. With a Critically revised Pext, a digest of Various Readings, Marginal References to verbal and idiomatic usage, Prolegomena, and a Critical and Exegetical Commentary. For the use of theological students and ministers. By the late henry Alford, D.D., Dean of Canterbury. 4 vols. 8 vo . $£ 52 \mathrm{~s}$. Sold separately.

- The New Testament for English Readers. Containing the Authorized Version, with additional Corrections of Readings and Renderings, Marginal References, and a Critical and Explanatory Commentary. In 2 vols. 62 145 s. 6 d. Alse sold in 4 parts separately.

AUGUSTINE de Civitate Dei. Books XI. and XII. By the rev. henry D. GEE, B.D., F.S.A. I. Text only. 2s. II. Introduction and Translation. 3 s.

- In Joannis Evangelium Tractates XXIV-XXVII. Edited by the rev. henry gee, b.d., F.S.A. I. Text only, Is. $6 d$. II. Translation by the late REV. CANON H. BROWN. Is. $6 d$.
BARRETT (A. C.). Companion to the Greek Testament. By the late A. C. BARRETT, M. A., Caius College, Cambridge. 5thedition. Fcap. 8vo, 5 s.

BARRY (BP.). Notes on the Catechism. For the use of Schools. By the rt. Rev. bishop barry, D.D. Ioth edition. Fcap. 2s.
BLEEK. Introduction to the Old Testament. By friedrich bleek. Edited by johann bleek and adolf kamphausen. Translated from the second edition of the German by G. H. venables under the supervision of the rev. e. venables, Residentiary Canon, of Lincoln. 2nd edition, with Corrections. With Index. 2 vols. small post 8 vo, 5 s. each.
BUTLER (BP.). Analogy of Religion. With Analytical Introduction and copious Index, by the late RT. REV. DR. STEERE. Fcap. 3s. 6d.
EUSEBIUS. Ecclesiastical History of Eusebius Pamphilus, Bishop of Cæsarea. Translated from the Greek by REv. C. F. CRUSE, M.A. With Notes, a Life of Eusebius, and Chronological Table. Sm. post 8vo, 5 s.
GREGORY (DR.). Letters on the Evidences, Doctrines, and Duties of the Christian Religion. By Dr. OLINTHUS GREGORY, F.r.A.S. Small post 8vo, 3s. 6d.
HUMPHRY (W. G.). Book of Common Prayer. An Historical and Explanatory Treatise on the. By w. G. HUMPHRy, B.D., late Fellow of Trinity College, Cambridge, Prebendary of St. Paul's, and Vicar of St. Martin's-in-the-Fields, Westminster. 6th edition. Fcap. 8vo, 2s. 6d. Cheap Edition, for Sunday School Teachers. Is.
JOSEPHUS (FLAVIUS). The Works of. whiston's Translation. Revised by rev. A. R. shilleto, m.a. With Topographical and Geographical Notes by COLONEL SIR C. W. WILSON, K.C.B. 5 vols. 3 s. $6 d$. each.
LUMBY (DR.). The History of the Creeds. I. Ante-Nicene. II. Nicene and Constantinopolitan. III. The Apostolic Creed. IV. The Quicunque, commonly called the Creed of St. Athanasius. By J. Rawson lumby, D.d., Norrisian Professor of Divinity, Fellow of St. Catherine's College, and late Fellow of Magdalene College, Cambridge. 3 rd edition, revised. Crown 8vo, 7s. 6d.

- Compendium of English Church History, from 1688-1830. With a Preface by J. Rawson lumby, D.D. Crown 8vo, $6 s$.
MACMICHAEL (J. F.). The New Testament in Greek. With English Notes and Preface, Synopsis, and Chronological Tables. By the late rev. J. F. MaCmichael. Fcap. 8vo (730 pp .), 4s. 6d.

Also the Four Gospels, and the Acts of the Apostles, separately. In paper wrappers, $6 d$. each.
MILLER (E.). Guide to the Textual Criticism of the New Testament. By rev. \& miller, M.A., Oxon, Rector of Bucknell, Bicester. Crown 8vo, 4 s .
NEANDER (DR. A.). History of the Christian Religion and Church. Translated ty J. torrey. 10 vols. small post $8 \mathrm{vo}, 3$ s. $6 d$. each.

- Life of Jesus Christ. Translated by j. mcclintock and c. blumenthal. Small post $8 \mathrm{vo}, 3$ s. $6 d$.
- History of the Planting and Training of the Christian Church by the Apostles. Translated by j. E. Ryland. 2 vols. 3s. $6 d$. each.

NEANDER (DR. A.). Lectures on the History of Christian Dogmas. Edited by Dr. JACOBI. Translated by J. E. Ryland. 2 vols. small post $8 \mathrm{vo}, 3$ s. 6 d . each.

- Memorials of Christian Life in the Early and Middle Ages. Translated by J. e. ryland. Small post 8 vo , 3 s. $6 d$.
PEARSON (BP.). On the Creed. Carefully printed from an Early Edition. Edited by e. wal Ford, M.A. Post 8vo, 5 s.
PEROWNE (BP.). The Book of Psalms. A New Translation, with Introductions and Notes, Critical and Explanatory. By the right rev. J. J. stewart perowne, D.d., Bishop of Worcester. 8vo. Vol. I. 8 th edition, revised. 18s. Vol. II. $7^{\text {th }}$ edition, revised. 16 s.
- The Book of Psalms. Abridged Edition for Schools. Crown 8 vo . 7th edition. IOS. 6 d .
SADLER (M. F.). The Church Teacher's Manua! of Christian Instruction. Being the Church Catechism, Expanded and Explained in Question and Answer. For the use of the Clergyman, Parent, and Teacher. By the rev. M. F. Sadler, Prebendary of Wells, and Rector of Honiton. 43 rd thousand. 2s. 6d.
*** A Complete List of Prebendary Sadler's Works will be sent on application.
SCRIVENER (DR.). A Plain Introduction to the Criticism of the New Testament. With Forty-four Facsimiles from Ancient Manuscripts. For the use of Biblical Students. By the late F. H. Scrivener, m.a., D.C.L., LI.. D., Prebendary of Exeter. $4^{\text {th }}$ edition, thoroughly revised, by the Rev. e. miller, formerly Fellow and Tutor of New College, Oxford. 2 vols. demy $8 \mathrm{vo}, 32 \mathrm{~s}$.
- Novum Testamentum Græce, Textus Stephanici, 1550. Accedunt variae lectiones editionum Bezae, Elzeviri, Lachmanni, Tischendorfii, Tregellesii, curante f. h. A. scrivener, A.m., D.c.l., ll.d. Revised edition. 4s. 6d.
- Novum Testamentum Græce [Editio Major] textus Stephanici, A.D. 1556. Cum variis lectionibus editionum Bezae, Elzeviri, Lachmanni, Tischendorfii, Tregellesii, Westcott-Hortii, versionis Anglicanæ emendatorum curante F. H. A. SCRIVENER, A.M., D.C.L., Ll.D., accedunt parallela s. scripture loca. Small post 8vo. 2nd edition. 7s. $6 d$.

An Edition on writing-paper, with marginfornotes. 4to, half bound, 12 s .
WHEATLEY. A Rational Illustration of the Book of Common Prayer. Being the Substance of everything Liturgical in Bishop Sparrow, Mr. L'Estrange, Dr. Comber, Dr. Nicholls, and all former Ritualist Commentators upon the same subject. Small post $8 \mathrm{vo}, 3 \mathrm{~s} .6 \mathrm{~d}$.
WHITAKER (C.). Rufinus and His Times. With the Text of his Commentary on the Apostles' Creed and a Translation. To which is added a Condensed History of the Creeds and Councils. By the rev. charles whitaker, b.a., Vicar of Natland, Kendal. Demy 8vo, 5 s.

Or in separate Parts.-I. Latin Text, with Various Readings, $2 s .6 \mathrm{~d}$. 2. Summary of the History of the Creeds, 1s. 6d. 3. Charts of the Heresies of the Times preceding Rufinus, and the First Four General Councils, $6 d$. each.

- St. Augustine: De Fide et Symbolo-Sermo ad Catechumenos. St. Leo ad Flavianum Epistola-Latin Text, with Literal Translation, Notes, and History of Creedsand Councils. 5s. Also separately, Literal Translation. 2s.
- Student's Help to the Prayer-Book. 3 s.

SUMMARY OF SERIES.

Bibliotheca Classica.
Public School Series.
Cambridge Greek and Latin Texts.
Cambridge Texts with Notes.
Grammar School Classics.
Primary Classics.
Bell's Classical Translations.
Cambridge Mathematical Series.
Cambridgi School and College Text Books.
Foreign Classics.
Modern French Authors.
Modern German Authors.
Gombert's French Drama.
Bell's Modern Translations.
Bell's English Classics.
Handbooks of English Literature.
Technological Handbooks.
Bell's Agricultural Series.
Bell's Reading Books and Geographical Readers.

BIBLIOTHECA CLASSICA.

AESCHYLUS. By dr. paley. $8 s$.
CICERO. By G. Long. Vols. I. and II. 8s. each. DEMOSTHENES. ByR. whiston. 2 Vols. 8 s. each. EURIPIDES. By dr. Paley. Vols. II. and III. 8s. each. HERODOTUS. By dr. blakesley. 2 Vols. $12 s$.
HESIOD. By dr. Paley. 5 s.
HOMER. BY DR. PALEY. 2 Vols. 14 s .
horace. Bya. J. macleane. 8s.
PLATO. Phaedrus. By DR. THOMPSON. ${ }^{5}$.
SOPHOCLES. Vol. I. By F. h. blaydes. 5 s.
$\overline{\mathrm{V}}$ Vol. II. By dr. paley. 6 s.
VIRGIL. By conington and nettleship. 3 Vols. 10 . 6 d. each.

PUBLIC SCHOOL SERIES.

ARISTOPHANES. Peace. By dr. paley. 2s. $6 d$.

- Acharnians. By dr. paley. 2s. $6 d$.
- Frogs. By dr. paley. 2s. $6 d$.

CICERO. Letters to Atticus. Book 1. By A. PRETOR. 4s. 6d. DEMOSTHENES. De Falsa Legatione. By r. shilleto. 6 s.

- Adv. Leptinem. By B. w. Beatson. 3s. $6 d$.

LIVY. Books XXI. and XXII. By L. D. Dowdall. $2 s$. each.
PLATO. Apology of Socrates and Crito. By dr. w. wagner. 3s. 6 d . and 25. 6d.

- Phaedo. By dr. w. wagner. 5s. $6 d$.
- Protagoras. By w. wayte. 4s. 6d.
- Gorgias. By dr. thompson. 6s.
- Euthyphro. By G. h. wells. 3s.
- Euthydemus. By G. H. wells. 4 s .
- Republic. By G. H. WELLS. 5 s.

PLAUTUS. Aulularia. By dr. w. wagner. 45.6 d .

- Trinummus. By dr. w. wagner. 4s. $6 d$.
- Menaechmei. By dr. w.'wagner. 4s. $6 d$.
- Mostellaria. Bye. A. sonnenschein. ss.

PUBLIC SCHOOL SERIES-continued.

SOPHOCLES. Trachiniae. By A. PRETOR. 4s. 6 d . - Oedipus Tyrannus. By b. h. kennedy. $2 s .6 d$. TERENCE. By DR. W. WAGNER. 7s. $6 d$. THEOCRITUS. BY DR. PALEY. 4 s. 6 d .
THUCYDIDES. Book VI. By t. w. dougan, $2 s$.
CAMBRIDGE GREEK AND LATIN TEXTS.
AESCHYLUS. By rr. paley. $2 s$.
CAESAR. By g. hong. is. 6 d .
CICERO. De Senectute, de Amicitia, et Epistolae Selectae. By g. long. 1s. 6 d .

- Orationes in Verrem. By g. long. 2s. 6d.

EURIPIDES. By dr. paley. 3 Vols. 25 , each.
herodot is. By dr. blakesley. 2 Vols. 2s. 6d. each.
HOMER'S Iliad. By dr. paley. is. $6 d$.
horace. Bya. J. macleanr. is. $6 d$.
JUVENAL AND PERSIUS. By A. J. MACLEANE. is. $6 d$.
LUCRETIUS. By h. A. J. MUNRo. ${ }^{2 s}$.
SALLUST. By g. Long. is. $6 d$.
SOPHOCLES. By DR. PALEY. $2 s .6 d$.
TERENCE. By DR. W. WAGNER. 25 .
THUCYDIDES. By Dr. DONALDSON. 2 Vols. $2 s$. each.
VIRGIL. By PROF. CONINGTON. $2 s$.
XENOPHON. BY J. F. MACMICHARL. Is. $6 d$.
NOVUM TESTAMENTUM GRAECE. By dr. SCRIVENER. 4s. $6 d$.
CAMBRIDGE TEXTS WITH NOTES.
AESCHYLUS. By dr. paley. 6 Vols. 1s. $6 d$. each. EURIPIDES. By DR. PALEY. I3 Vols. (Ion, 2s.) is. $6 d$. each. HOMER'S Iliad. By dr. PALEY. IS.
SOPHOCLES. By dr. PALEY. 5 Vols. 1s. $6 d$. each.
XENOPHON. Hellenica. By rev. L. D. Dowdall. Books I. and II. 2s. each. - Anabasis. By J. F. MACMICHAEL. 6 Vols. $15.6 d$, each.

CICERO. De Senectute, de Amicitia, et Epistolae Selectae. By g. long. 3 Vols. Is. 6d. each.
OVID. Selections. By A. J. macleane. is. $6 d$.

- Fasti. By dr. paley. 3 Vols. 25 . each.

TERENCE. By DR. w. WAGNER. 4 Vols. is. $6 d$. each.
VIRGIL. By prof. conington. 12 Vols. is. $6 d$. each.
GRAMMAR SCHOOL CLASSICS.
CAESAR, De Bello Gallico. By g. Long. 4 s., or in 3 parts, is. $6 d$. each.
CATULLUS, TIBULLUS, and PROPERTIUS. By a. h. wratislaw, and F. N. SUTTON. 25.6 d .
CORNELIUS NEPOS. BY J. F. MACMICHAEL. $2 s$.
CICERO. De Senectute, De Amicitia, and Select Epistles. By G. Long. 3 s. HOMER. Iliad. By dr. paley. Books I.-XII. 4s. 6 d ., or in 2 Parts, 2s. $6 d$. each. horace. By A. J. macleane. $35.6 d$., or in 2 Parts, $2 s$. each.
JUVENAL. By herman prior. 3 s. $6 d$.
MARTIAL. By dr. paley and w. h. stonk. 4s. $6 d$.
OVID. Fasti. By dr. palky. 3s. $6 d$., or in 3 Parts, is. 6d. each.
SALLUST. Catilina and Jugurtha. By G. long and J. G. frazer. 3s. 6d., or $\ln 2$ Parts, 25 . each.
tACITUS. Germania and Agricola. By p. frost. $2 s .6 d$.
VIrGIL. CONINGTON's edition abridged. 2 Vols. 4s. 6d. each, or in 9 Parts, is. 6d. each.

- Bucolics and Georgics. conington's edition abridged. ${ }^{35}$.

XENOPHON. By J. F. MACMICHAEL. 3s. $6 d$., or in 4 Parts, xs. $6 d$. each.

- Cyropaedia. By g. m. gorham. 3s. 6 d., or in 2 Parts, 1s. $6 d$. each.
- Memorabilia. By percival frost. 3s.

PRIMARY CLASSICS.
EASY SELECTIONS FROM CAESAR. BYA. M. M. STEDMAN. IS. EASY SELECTIONS FROM LIVY. By A. M. M. STEDMAN. Is. $6 d$. EASY SELECTIONS FROM HERODOTUS. By A. G. LIDDELL. is. 6 d.

BELL'S CLASSICAL TRANSLATIONS.

AESCHYLUS. By walter headlam. 6 Vols. [In the press. ARISTOPHANES. Acharnians. By w, h. covington. is.
CAESAR'S Gallic War. By w. A. mcdevitte. 2 Vols. is. each.
CICERO. Friendship and Old Age. By G. H. wells. is.
demosthenes. On the Crown. By c. rann kennedy. is.
EURIPIDES. 14 Vols. By e. p. Coleridger. is. each.
HORACE. The Odes and Satires. By A. hamilton bryce, ll.d.
[In the press.
LIVY. Books I.-IV. By J. H. frerser. is. each.

- Book V. and VI. By e. s. weymouth. 1s. each.
- Book IX. By F. storr. Is.

LUCAN: The Pharsalia. Book I. By f. conway. is.
OVID. Fasti. 3 Vols. By h. t. riley. is. each.
-Tristia. By h. T. RILEY. is.
SOPHOCLES. 7 Vols. By e. P. COLERIDGE. is. each
VIRGIL. 6 Vols. By a. hamilton bryce, xs. each.
XENOPHON. Anabasis. 3 Vols. By J. s. watson. is. each.

- Hellenics. Books I. and II. By h. dale. is.

CAMBRIDGE MATHEMATICAL SERIES.
Arithmetic. By c. pendlebury. 4s. $6 d$. ., or in 2 Parts, $2 s .6 d$. each.
Key to Part II. 7s. 6 d. net.
EXAMPLES IN ARITHMETIC. By c. pendlebury. 3s.. or in 2 Parts, 1s. $6 d$. and $2 S$.
ARITHMETIC FOR INDIAN SCHOOLS. By PEndLEBURY and TAIT. 3 s.
ELEMENTARY ALGEBRA. By J. T. HATHORNTHWAITE. $2 s$.
CHOICE AND CHANCE. By w. A. whitworth. $6 s$.
EUCLID. By h. DEIGhton. 4s. 6 d., or Books I.-IV., 3 s. ; Books V.-XI., 2s. $6 d_{\text {. ; }}$; or Book I., 1s.; Books I. and II., 1s. 6 d.; Books I.-III., 25.6 d.; Books III. and IV., Is. $6 d$. KEY. $5 s$, net.
EXERCISES ON EUCLID, \&c. By J. MCDOWELL. 6s.
ELEMENTARY MENSURATION. By b. T. MOORB.
ELEMENTARY TRIGONOMETRY. By C. PENDLEBURY. 4 s .6 d .
ELEMENTARY TRIGONOMETRY. BY DYER and WHITCOMBE. 4s. 6 d .
PLANE TRIGONOMETRY. ByT. G. VYVYAN. 3 s. $6 d$.
ANALYTICAL GEOMETRY FOR BEGINNERS Part I. By t. g. vyvyan. 2s. $6 d$.
ELEMENTARX GEOMETRY OF CONICS. By dr. TAylor. 4s. 6d.
GEOMETRICAL CONIC SECTIONS. By DR. W. h. BESANT. 4s. $6 d$. Key 5 s. net.
GEOMETRICAL CONIC SECTIONS. By H. G. WILLIS. $5 s$.
SOLID GEOMETRY. By w. S. ALDIs. $6 s$.
GEOMETRICAL OPTICS. By w. S. ALDIS. $4 s$.
ROULETTES AND GLISSETTES. BYDR. w. h. BESANT. 5 s.
ELEMENTARY HYDROSTATICS. By DR. W. H. BESANT. 4s. $6 d$.
Solutions. 55 . net
HYDROMECHANICS. Part I. Hydrostatics. By dr. w. h. besant. 5 s.
DYNAMICS. By.Dr. w. h. beSAnt. ros. $6 d$.
RIGID DYNAMICS. By w. s. ALDIs. 4 s .
ELEMENTARY DYNAMICS. By dr. w. GARnBTT. 6s.
ELEMENTARY TREATISE ON HEAT. By DR. WV. GARNETT. 45.6 d .
ELEMENTS OF APPLIED MATHEMATICS. Byc. M. JESSOp. 6s.
PROBLEMS IN ELEMENTARY MECHANICS. By w. WALTON. $6 s$.
EXAMPLES IN ELEMENTARY PHYSICS. By w. GALLATLY. 4 s.
MATHEMATICAL EXAMPLES. By DYER and PROWDE SMITH. 6 s.
CAMBRIDGE SCHOOL AND COLLEGE TEXT BOOKS.
ARITHMETIC. By c. elser. 3s. 6 d .
By A. wrigley. 3s. 6 d .
EXAMPLES IN ARITHMETIC. By WATsON and Goudir. 25.6π. ALGEBRA. Byc. RlSEE. ${ }^{45}$.
EXAMPLES IN ALGEBRA. By MACMIChAEL and PROWDE SMITH. 3s. 6 d . and $4^{5 .} 6 d$.
PLANE ASTRONOMY. By P. T. MAIN. ts.

CAMBRIDGE SCHOOL TEXTS-continued.
STATICS. By bishor goodwin. 3 s.

> NEWTON'S Principia. By bvans and main. 45 .
> ANALYTICAL GEOMETRY. By T. G. vyvyan. ${ }^{\text {s. }}$. $6 d$.

COMPANION TO THE GREEK TESTAMENT. ByA.C. BARRETT. 5 s.
treatise on the book of common prayer. Byw. c. HUMPHRY. 25 . 6 d.
TEXT BOOK OF MUSIC. By h. C. BANISTER. 5 s.
CONCISE HISTORX OF MUSIC. By dr. h. g. bonavia hunt. 3s. 6 d .
FOREIGN CLASSICS.
FÉNELON'S Telémaque. By c. J. Delille. 2s. $6 d$.
LA FONTAINE'S Select Fables. By F. z. A. GAsc. is. $6 d$.
Lamartine's le Tailleur de Pierres de Saint-Point. By j. boiflla. is. 6 d.
SAINTINE'S Picciola. By Dr. Dubec. rs. $6 d$.
VOLTAIRE'S Charles XII. By L. DIREY. is. $6 d$.
GERMAN BALLADS. By c. L. biblefrid. is. $6 d$.
GOETHE'S Hermann und Dorothea. By e. bell and e. wölfel. is. $6 d$.
SCHILLER'S Wallenstein. By dr. buchhrim. 5s., or in 2 Pa:ts, $2 s$. $6 d$. each.

- Maid of Orleans. By dr. w. wagner. rs. $6 d$.
- Maria Stuart. By v. kastekr. is. 6 d .

MODERN FRENCH AUTHORS.

BALZAC'S Ursule Mirouët. By J. boîelle. 3 s.
CLARETIE'S Pierrille. By j. boirlle. 2s. $6 d$.
DAUDET'S La Belle Nivernaise. By j. boïelle. $2 s$.
GREVILLE'S Le Moulin Frappier. By J. boïrlle. 3^{s}.
HUGO'S Bug Jargal. By j. boíblle 3 s.

MODERN GERMAN AUTHORS.

HEY'S Fabeln für Kinder. By prof. lange. is. $6 d$. - - with Phonetic Transcription of Text, \&c. $2 s$. FREYTAG'S Soll und Haben. Byw. h. CRUMP. $2 s .6 \pi$. BENEDIX'S Doktor Wespe. By PRof. Lange. $2 s .6 d$.
HOFFMANN'S Meister Martin. By prof. lange. is. $6 d$.
heYSE'S Hans Lange. By A. A. Macdonell. 25.
AUERBACH'S Auf Wache, and Roquette's Der Gefrorene Kuss. By
A. A. MACDONELL. 25.

MOSER'S Der Bibliothekar. By prof. lange. zs.
EBERS' Eine Frage. By F. STORR. $2 s$.
FREYTAG'S Die Journalisten. By prof. lange $2 s .6 d$. GUTZKOW'S Zopf und Schwert. By prof. LANGE. 2s. $6 d$. GERMAN EPIC TALES. By Dr. kARL neuhaus. $2 s .6 d$. SCHEFFEL'S Ekkehard. By Dr. H. HAGER. 3 s.
The following Series are given in full in the body of the Catalogue.
GOMBERT'S French Drama. See page 31.
BELL'S Modern Translations. See page 34.
BELL'S English Classics. See pp $24,25$.
HANDBOOKS OF ENGLISH LITERATURE. See page 26.
TECHNOLOGICAL HANDBOOKS. See page 37.
BELL'S Agricultural Series. See page 36.
BELL'S Reading Books and Geographical Readers. See pp. 25, 26.

[^0]\square
-
$$
=
$$
$$
\text { B.B.C.6. } 15 / 4150
$$

[^0]: CHISWICK PRESS:-C. WHITTINGHAM AND CO., TOOKS COURT, CHANCERY LANE

